1、证明: 第三类分块初等变换是若干个第三类初等变换的复合. 特别地, 第三类分块初等变换不改变行列式的值.

2、设 $n\,(n\geq 2)$ 阶方阵 $A=(a_{ij}(x))$, 其中每个元素 $a_{ij}(x)$ 都是关于未定元 $x$ 的多项式. 若 $k$ 是正整数, 满足 $x^k$ 整除 $A$ 的所有代数余子式 $A_{ij}$, 证明: $x^{k+1}$ 整除 $A$ 的行列式 $|A|$.

提示  考虑 $A$ 的伴随矩阵 $A^*$ 的行列式. 另外, 本题还可以推广为: 若 $k$ 是正整数, $p(x)$ 是数域 $\mathbb{K}$ 上的不可约多项式, 满足 $p(x)^k$ 整除 $A$ 的所有代数余子式 $A_{ij}$, 则 $p(x)^{k+1}$ 整除 $|A|$.

3、设 $M=\begin{pmatrix} a_1^2 & a_1a_2+1 & \cdots & a_1a_n+1 \\ a_2a_1+1 & a_2^2 & \cdots & a_2a_n+1 \\ \vdots & \vdots & \vdots & \vdots \\ a_na_1+1 & a_na_2+1 & \cdots & a_n^2 \end{pmatrix}$, 证明: $r(M)\geq n-1$.

提示  参考复旦高代教材第102页的例2.6.5,可用秩的降阶公式来做.

4、设 $A$ 是 $m\times n$ 实矩阵, 试用秩的子式判别法和 Cauchy-Binet 公式证明: $r(A'A)=r(AA')=r(A)$.

提示  这是复旦高代教材第179页的复习题41, 复旦高代白皮书第151页的例3.72, 那里用的是线性方程组的求解理论来做的.

5、设 $A,B$ 都是 $n$ 阶方阵, 约定 $A^0=I_n$.

(1) 若 $k$ 是非负整数, 使得 $r(A^k)=r(A^{k+1})$, 证明: 对任意的 $i\geq k$, $r(A^i)=r(A^k)$.

(2) 记 $s(A)=\min\{k\in\mathbb{N}\mid r(A^k)=r(A^{k+1})\}$, 称为 $A$ 的稳定指数, 意味着从 $i\geq s(A)$ 开始, $A^i$ 的秩保持稳定了, 这个最终稳定的秩记为 $r_{\infty}(A)$, 即 $r_{\infty}(A)=r(A^i)$, $\forall\,i\geq s(A)$. 证明: $s(A)$ 必存在, 并且是 $0$ 和 $n$ 之间的某个自然数.

(3) 证明: $r_{\infty}(AB)=r_{\infty}(BA)$.

(4) 证明: $|s(AB)-s(BA)|\leq 1$, 并举例说明可取到 $A,B$, 使得 $|s(AB)-s(BA)|=1$.

提示  前面两问参考复旦高代白皮书例4.32的证明. 后面两问合在一起考虑, 利用秩的基本公式以及 $(AB)^{i+1}=A(BA)^iB$ 和 $B(AB)^{i+1}A=(BA)^{i+2}$ 来证明.

6、设 $A=(a_{ij})$ 是 $n$ 阶方阵, $A_{ij}$ 表示元素 $a_{ij}$ 对应的代数余子式. 设 $1\leq i_1<\cdots<i_r\leq n$, $1\leq j_1<\cdots<j_r\leq n$ 为两组给定的指标集, $\hat{\,i}$ 表示 $i$ 不在指标集中, 试证明:

$$\begin{vmatrix} A_{i_1j_1} & \cdots & A_{i_rj_1} \\ \vdots & \vdots & \vdots \\ A_{i_1j_r} & \cdots & A_{i_rj_r} \end{vmatrix}=(-1)^{i_1+\cdots+i_r+j_1+\cdots+j_r}A\begin{pmatrix} 1 & \cdots & \hat{i_1} & \cdots & \hat{i_r} & \cdots & n \\ 1 & \cdots & \hat{j_1} & \cdots & \hat{j_r} & \cdots & n \end{pmatrix}|A|^{r-1}.$$

提示  先利用公式 $AA^*=|A|I_n$ 以及复旦高代白皮书例9.39类似的方法证明 $i_1=j_1=1$, $\cdots$, $i_r=j_r=r$ 的特殊情形, 然后再利用行列对换将一般情形化约到特殊情形即可.

7. 设 $V$ 是 $M_n(\mathbb{K})$ 的子空间, 满足 $V$ 中所有的非零矩阵都是非异阵, 证明: $\dim_{\mathbb{K}}V\leq n$.

提示  构造 $M_n(\mathbb{K})$ 的子空间 $U$, 满足 $U$ 中所有的矩阵都是奇异阵且 $\dim U=n^2-n$, 然后利用直和 $V\oplus U\subseteq M_n(\mathbb{K})$ 得到结论.

8. 设 $\varphi$ 是 $n$ 维线性空间 $V$ 上的线性变换, 满足 $\varphi^m=0$, 其中 $m,q$ 为正整数, $n=mq+1$. 证明: $\dim\mathrm{Im\,}\varphi\leq n-q-1$.

提示  代数方法可用 Sylvester 不等式, 几何方法可用线性映射的维数公式.

9. 定义: 线性空间 $V$ 中的一族向量 $B=\{e_i\}_{i\in I}$ 称为线性无关的, 如果 $B$ 中任意有限个向量都是线性无关的. $B=\{e_i\}_{i\in I}$ 称为线性空间 $V$ 的一组基, 如果 $B$ 是线性无关的, 并且 $V=L(B)$, 即 $V$ 中任一向量都是 $B$ 中有限个向量的线性组合. 利用 Zorn 引理或选择公理可证明任一线性空间 $V$ 中都存在一组基 $B$ (在抽象代数课中会给出证明, 大家现在予以承认即可).

(1) 证明: $\mathbb{K}[x]$ 的一组基为 $B=\{1,x,x^2,x^3,\cdots\}$.

(2) 举例说明: 复旦高代教材第 204 页的习题 3 对无限维线性空间一般并不成立, 即存在无限维线性空间 $V$ 上的自同构 $\varphi$ 以及 $\varphi$ 的不变子空间 $W$, 但 $W$ 不是 $\varphi^{-1}$ 的不变子空间.

提示  考虑 $V=\mathbb{K}[x]$ 的基之间的双射诱导的线性自同构, 然后再构造相应的 $\varphi$-不变子空间 $W$.

10. 设 $V$ 是数域 $\mathbb{K}$ 上的 $n$ 维线性空间, $\varphi$ 是 $V$ 上的线性变换, 证明下列条件等价:

(1) $V=\mathrm{Ker\,}\varphi+\mathrm{Im\,}\varphi$;

(2) $V=\mathrm{Ker\,}\varphi\oplus\mathrm{Im\,}\varphi$;

(3) $\mathrm{Ker\,}\varphi\cap\mathrm{Im\,}\varphi=0$;

(4) $\mathrm{Ker\,}\varphi=\mathrm{Ker\,}\varphi^2$, 或等价地, $\dim\mathrm{Ker\,}\varphi=\dim\mathrm{Ker\,}\varphi^2$;

(5) $\mathrm{Im\,}\varphi=\mathrm{Im\,}\varphi^2$, 或等价地, $r(\varphi)=r(\varphi^2)$;

(6) $\mathrm{Ker\,}\varphi$ 存在 $\varphi$-不变的补空间, 即存在 $\varphi$-不变子空间 $U$, 使得 $V=\mathrm{Ker\,}\varphi\oplus U$;

(7) $\mathrm{Im\,}\varphi$ 存在 $\varphi$-不变的补空间, 即存在 $\varphi$-不变子空间 $W$, 使得 $V=\mathrm{Im\,}\varphi\oplus W$.

11. 设 $f_1(x),f_2(x),\cdots,f_m(x)\in\mathbb{K}[x]$, 证明: $$((f_1(x),f_2(x)),f_3(x),\cdots,f_m(x))=(f_1(x),f_2(x),f_3(x),\cdots,f_m(x)),$$ $$[[f_1(x),f_2(x)],f_3(x),\cdots,f_m(x)]=[f_1(x),f_2(x),f_3(x),\cdots,f_m(x)].$$

  复旦高代书第 216 页定理 5.3.1 告诉我们: 可用辗转相除法求两个多项式的最大公因式, 第 220 页推论 5.3.6 将求两个多项式的最小公倍式转化为求两个多项式的最大公因式. 由于最大公因式 (最小公倍式) 的定义与 $f_i(x)$ 的顺序无关, 上述公式告诉我们: 求 $m$ 个多项式的最大公因式 (最小公倍式) 时, 可以任意选取两个多项式先求最大公因式 (最小公倍式), 然后再求 $m-1$ 个多项式的最大公因式 (最小公倍式), 这样不断地递推下去, 最后可求得 $m$ 个多项式的最大公因式 (最小公倍式). 这是一种不依赖于多项式因式分解的可计算的方法.

12. 设循环矩阵 $A=\begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \end{pmatrix}$ 是非异阵, 求证: $A^{-1}$ 也是循环矩阵.

提示  利用新白皮书的例2.12、例2.52和例5.75类似的证明方法 (互素多项式的应用) 来做.

复旦高等代数 I(15级)思考题的更多相关文章

  1. 复旦高等代数 I(16级)思考题

    思考题的说明 一.本学期高代I的思考题面向16级的同学,将不定期地进行更新; 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家: 三.请大家先独立解答思考题, ...

  2. [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)

    [问题2014S12]  设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...

  3. 复旦高等代数 II(17级)每周一题

    本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1道思考题(共16道),供大家思考和解答.每周一题通过“ ...

  4. 复旦高等代数 I(16级)每周一题

    每周一题的说明 一.本学期高代I的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目); 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家: ...

  5. 复旦大学2015--2016学年第二学期(15级)高等代数II期末考试第六大题解答

    六.(本题10分)  设 $n$ 阶复方阵 $A$ 的特征多项式为 $f(\lambda)$, 复系数多项式 $g(\lambda)$ 满足 $(f(g(\lambda)),g'(\lambda))= ...

  6. 复旦高等代数II(16级)每周一题

    每周一题的说明 一.本学期高代II的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目); 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家 ...

  7. 复旦大学2015--2016学年第一学期(15级)高等代数I期末考试第八大题解答

    八.(本题10分)  设 $V$ 为数域 $K$ 上的 $n$ 维线性空间, $\varphi$ 为 $V$ 上的线性变换. 子空间 $C(\varphi,\alpha)=L(\alpha,\varp ...

  8. 集大软件工程15级结对编程week1

    集大软件工程15级结对编程week1 0. 团队成员 姓名 学号 博客园首页 码云主页 孙志威 20152112307 Agt Eurekaaa 孙慧君 201521123098 野原泽君 野原泽君 ...

  9. 集大软件工程15级个人作业Week2

    集大软件工程15级个人作业Week2 快速通读教材<构建之法>,并参照提问模板,提出5个问题. 在每个问题后面,请说明哪一章节的什么内容引起了你的提问,提供一些上下文 列出一些事例或资料, ...

  10. 集大软件工程15级个人作业Week1

    集大软件工程15级个人作业Week1 孙志威 201521123077 博客园主页 码云地址 阅读参考材料,并回答下面几个问题 (1)回想一下你初入大学时对网络工程专业的畅想 当初你是如何做出选择网络 ...

随机推荐

  1. level分层次输出内容添加leve

    代码如下:function getSubComments($parent = 0, $level = 0) { $db = &JFactory::getDBO(); $sql = " ...

  2. eclipse创建web项目

    总结为3步: 必备环境: Eclipse jee Tomcat 1.创建services 2.创建dynamic web project项目 3.WebContent路径下创建index.jsp 运行 ...

  3. 20145209&20145309信息安全系统设计基础实验报告 (5)

    班级:1452 1453 姓名:20145309李昊 20415209刘一阳 20145220韩旭飞 实验日期:2016.12.1 时间:10:10-12:30 实验序号:5 实验目的: 掌握在 AR ...

  4. MEMORY Storage Engine MEMORY Tables TEMPORARY TABLE max_heap_table_size

    http://dev.mysql.com/doc/refman/5.7/en/create-table.html You can use the TEMPORARY keyword when crea ...

  5. Android jni系统变量、函数、接口定义汇总

    在做Android jni开发时,jni为我们提供了哪些函数.接口.变量,有时候一头雾水,今天就把jni.h中定义的所有内容列出来,供自己查阅: /* * Copyright (C) 2006 The ...

  6. Slip.js(移动端跟随手指滑动组件,零依赖)

    Slip.js可用于移动端滑动banner,移动端整屏滑动等效果,个人觉得用于移动端滑动banner比较好,不会和iScroll.js起冲突,因为它不依赖任何其它的js库. Html: <!do ...

  7. Git stash 常见用法

    Git stash git stash这个命令可以将当前的工作状态保存到git栈,在需要的时候再恢复 1.1 git stash  保存当前的工作区与暂存区的状态,把当前的工作隐藏起来,等以后需要的时 ...

  8. ubuntu编译运行xv6

    最近想找个简单的类Unix系统学习下, xv6不错的, 所有代码加起来不到一万行,首先把代码跑起来还是很重要的. # 下载xv6源码并编译 git clone git://pdos.csail.mit ...

  9. 学习OpenCV——行人检测&人脸检测(总算运行出来了)

    之前运行haar特征的adaboost算法人脸检测一直出错,加上今天的HOG&SVM行人检测程序,一直报错. 今天总算发现自己犯了多么白痴的错误——是因为外部依赖项lib文件没有添加完整,想一 ...

  10. 2Sigma OA prepare: Friends Circle

    DFS & BFS: 关键在于构造graph package twoSigma; import java.util.ArrayList; import java.util.HashSet; i ...