题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069

Monkey and Banana

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 18739    Accepted Submission(s): 9967

Problem Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.

They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.

 
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.
 
Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".
 
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
 
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
 
Source
题目大意:
研究人员为了研究猴子的IQ,把香蕉挂屋顶,然后准备了N个方块(每个方块随便你用多少个)猴子利用这些方块达成塔就能吃到香蕉。但是猴子要爬上塔肯定是要能有地方落脚的。所以2个方块在叠加的时候,下面的那块的长宽都必须严格大于上面一块,否则猴子没地方落脚爬不上去;
现在研究人员怕香蕉挂太高,搞得猴子吃不到。问你最高能搭成多少高。这样他们好确定香蕉的位置。

搭积木规则:
x要能搭在y积木上,要求x的底部面积小于y的底部面积(不能等于,只有小于 ,猴子才有落脚的地方)
分析:
1.每个积木有六个面,都可以当作底面,所以一个积木有6种不同的放法,我们把每种方法看成一个“积木”,由于严格的要求长宽必须要小于下面的那块木块,所以可以推出,一个木块(指的是分解完的木块)至多只能被用一次。因为长宽相同的木块不能叠加。
2.LIS问题,先按照底部面积排序,然后将高度做权值按照LIS问题的方法处理
 
状态转移:

dp[x]表示用上第x块木块时能搭的最高高度。

dp[i] = max(dp[i],dp[j]+a[i].z); j ∈[0,i-1];

边界条件(初始化):dp[i] = a[i].z (因为每个方块最优解至少比他自身的高度要高)

记得在状态转移前要加上条件(if(a[j].x > a[i].x && a[j].y > a[i].y))

#include<bits/stdc++.h>
using namespace std;
#define max_v 185
struct node
{
int x,y,z;
};
bool cmp(node a,node b)
{
return a.x*a.y>b.x*b.y;
}
struct node a[max_v];
int dp[max_v];
int main()
{
int c=,n;
while(~ scanf("%d",&n))
{
if(n==)
break;
for(int i=; i<*n;)
{
int x,y,z;
scanf("%d %d %d",&x,&y,&z);
a[i].x=x,a[i].y=y,a[i].z=z;
i++;
a[i].x=x,a[i].y=z,a[i].z=y;
i++;
a[i].x=y,a[i].y=x,a[i].z=z;
i++;
a[i].x=y,a[i].y=z,a[i].z=x;
i++;
a[i].x=z,a[i].y=y,a[i].z=x;
i++;
a[i].x=z,a[i].y=x,a[i].z=y;
i++;
}
sort(a,a+*n,cmp);
dp[]=a[].z;
//dp[i] 表示用上第i给木块能达到的最大高度
for(int i=; i<*n; i++)
{
dp[i]=a[i].z;
for(int j=; j<i; j++)
{
if(a[i].x<a[j].x&&a[i].y<a[j].y)
{
dp[i]=max(dp[i],dp[j]+a[i].z);
}
}
}
int t=;
for(int i=; i<*n; i++)
{
if(t<dp[i])
{
t=dp[i];
}
}
printf("Case %d: maximum height = %d\n",++c,t);
}
}

HDU 1069 Monkey and Banana(转换成LIS,做法很值得学习)的更多相关文章

  1. HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)

    HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...

  2. HDU 1069 Monkey and Banana dp 题解

    HDU 1069 Monkey and Banana 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种 ...

  3. HDU 1069 Monkey and Banana(二维偏序LIS的应用)

    ---恢复内容开始--- Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  4. HDU 1069 monkey an banana DP LIS

    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64uDescription 一组研究人员正在 ...

  5. HDU 1069 Monkey and Banana (DP)

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  6. HDU 1069—— Monkey and Banana——————【dp】

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  7. HDU 1069 Monkey and Banana (动态规划、上升子序列最大和)

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  8. HDU 1069 Monkey and Banana 基础DP

    题目链接:Monkey and Banana 大意:给出n种箱子的长宽高.每种不限个数.可以堆叠.询问可以达到的最高高度是多少. 要求两个箱子堆叠的时候叠加的面.上面的面的两维长度都严格小于下面的. ...

  9. hdu 1069 Monkey and Banana

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

随机推荐

  1. HTTP 错误500.19 - 错误代码 0x80070021

    1.错误描述 HTTP 错误500.19 -Internal Server Error 无法访问请求的页面,因为该页的相关配置数据无效. 详细错误信息 模块 IIS Web Core  通知 Begi ...

  2. PoPo数据可视化周刊第2期

    羡辙在bilibili开课啦 就在这个月,不知道是不是受了 @Jannchie见齐 的影响,羡辙竟然在bilibili开授Echarts课程,目前已开课两节. [滚城一团]的 ECharts 训练营 ...

  3. html和css入门 (二)

    CSS基础 什么是CSS 简单来说,层叠样式表(Cascading Style Sheet)是一种专门用来控制界面外观风格的文档. CSS发展历史 1996年 CSS 1.0 规范面世,其中加入了字体 ...

  4. 《CSS3揭秘》上(边框,投影,渐变,条纹效果,蚂蚁行军)

    最近看了<CSS3揭秘>一书,里面真的是干货满满呀,现将常用到的一些技巧归纳总结,便于日后用到查找.不得不感叹学无止境哦~ 1.边框与背景 半透明边框 .demo{ background- ...

  5. Laravel基本使用

    laravel一.简介二.运行环境要求 1.php 版本>=5.5.9 2.Mcrypt PHP扩展 php的加密扩展,提供多种加密算法 3.openssl扩展 对传输的数据进行加密 4.mbs ...

  6. 关于modelmap.addAttribute("",)转到jsp页面获取不到值的问题

    问题一,可能是你设置的web.xml的头有问题 掉坑里好一会,发现我默认生成的web.xml中头部的配置是 <!DOCTYPE web-app PUBLIC "-//Sun Micro ...

  7. Climbing Stairs 爬楼梯问题,每次可以走1或2步,爬上n层楼梯总方法 (变相fibonacci)

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  8. spring cloud config配置

    参考: http://www.ityouknow.com/springcloud/2017/05/22/springcloud-config-git.html http://www.ityouknow ...

  9. Spring Cloud中,Eureka常见问题总结

    Spring Cloud中,Eureka常见问题总结. 1 eureka.environment: 指定环境 参考文档: 1 eureka.datacenter: 指定数据中心 参考文档: 使用配置项 ...

  10. 初识WCF2

    参照: http://blog.csdn.net/songyefei/article/details/7371571 在上一篇中,我们在一个控制台应用程序中编写了一个简单的WCF服务并承载了它.先回顾 ...