Node2vec 代码分析
Node2vec 代码从Github上clone到本地,主要是main.py和node2vec.py两个文件。
下面把我的读代码注释放到上面来,
import numpy as np
import networkx as nx
import random
class Graph():
def __init__(self, nx_G, is_directed, p, q):
self.G = nx_G
self.is_directed = is_directed
self.p = p
self.q = q
def node2vec_walk(self, walk_length, start_node):
'''
Simulate a random walk starting from start node.
'''
G = self.G
alias_nodes = self.alias_nodes
alias_edges = self.alias_edges
walk = [start_node]
while len(walk) < walk_length:
cur = walk[-1]
cur_nbrs = sorted(G.neighbors(cur))
if len(cur_nbrs) > 0:
if len(walk) == 1:
walk.append(
cur_nbrs[alias_draw(alias_nodes[cur][0],
alias_nodes[cur][1])
]
"""
结合cur_nbrs = sorted(G.neighbor(cur)) 和 alias_nodes/alias_edges的序号,
才能确定节点的ID。
所以路径上的每个节点在确定下一个节点是哪个的时候,都要经过sorted(G.neighbors(cur))这一步。
"""
)
else:
prev = walk[-2]
next = cur_nbrs[
alias_draw(alias_edges[(prev, cur)][0],
alias_edges[(prev, cur)][1])
]
walk.append(next)
else:
break
return walk
def simulate_walks(self, num_walks, walk_length):
'''
Repeatedly simulate random walks from each node.
'''
G = self.G
walks = []
nodes = list(G.nodes())
print 'Walk iteration:'
for walk_iter in range(num_walks):
print str(walk_iter+1), '/', str(num_walks)
random.shuffle(nodes)
for node in nodes:
walks.append(self.node2vec_walk(walk_length=walk_length, start_node=node))
return walks
def get_alias_edge(self, src, dst):
'''
Get the alias edge setup lists for a given edge.
'''
G = self.G
p = self.p
q = self.q
unnormalized_probs = []
for dst_nbr in sorted(G.neighbors(dst)):
if dst_nbr == src:
unnormalized_probs.append(G[dst][dst_nbr]['weight']/p)
elif G.has_edge(dst_nbr, src):
unnormalized_probs.append(G[dst][dst_nbr]['weight'])
else:
unnormalized_probs.append(G[dst][dst_nbr]['weight']/q)
norm_const = sum(unnormalized_probs)
normalized_probs = [float(u_prob)/norm_const for u_prob in unnormalized_probs]
"""
对边的权重,变化后的权重,再进行归一化了。
生成的normalized_probs,是对一条边的终点的下一步节点转移的归一化概率的列表
"""
return alias_setup(normalized_probs)
"""
返回的参数,第一个返回值是别名列表,第二个返回值是到各个节点的转移概率。
"""
def preprocess_transition_probs(self):
'''
Preprocessing of transition probabilities for guiding the random walks.
'''
G = self.G
is_directed = self.is_directed
alias_nodes = {}
for node in G.nodes():
unnormalized_probs = [G[node][nbr]['weight'] for nbr in sorted(G.neighbors(node))]
"""
G.neighbors(node)得到一个邻接节点列表
这里面sorted(G.neighbors(node))的用法,非常重要
unnormailized_probs是一个列表,列表的每个元素是边上的权重
"""
norm_const = sum(unnormalized_probs)
normalized_probs = [float(u_prob)/norm_const for u_prob in unnormalized_probs]
"""
这样就得到了归一化的、到各点的转移概率
"""
alias_nodes[node] = alias_setup(normalized_probs)
"""
alias_nodes[node]是一个字典,字典的value,又是一个包含两个元素的元组(tuple): 第一个元素是别名列表,第二个元素是到各个节点的转移概率。
"""
alias_edges = {}
"""
alias_edges是字典
"""
triads = {}
if is_directed:
for edge in G.edges():
alias_edges[edge] = self.get_alias_edge(edge[0], edge[1])
else:
for edge in G.edges():
"""
在alias_edges字典中加入项
alias_edges[edge]是一个字典,字典的value,又是一个包含两个元素的元组(tuple):
第一个元素是边的终点的邻接节点转移概率对应的别名列表(sorted的前后序号,不是节点序号),第二个元素是边的终点,到各个节点的转移概率。
"""
alias_edges[edge] = self.get_alias_edge(edge[0], edge[1])
alias_edges[(edge[1], edge[0])] = self.get_alias_edge(edge[1], edge[0])
self.alias_nodes = alias_nodes
self.alias_edges = alias_edges
"""
这里面alias_nodes和alias_edges都是字典,字典的元素组成都是 '节点序号':'(邻接节点转移概率对应的别名列表(sorted的前后序号,不是节点序号), 到邻接节点的转移概率)' 的形式。
不同的是,alias_edges中,'到邻接节点的转移概率'这个取值,有p或q的影响。
"""
return
def alias_setup(probs):
'''
Compute utility lists for non-uniform sampling from discrete distributions.
Refer to https://hips.seas.harvard.edu/blog/2013/03/03/the-alias-method-efficient-sampling-with-many-discrete-outcomes/
for details
the input list probs, in this using context, is the normalized weight of nodes already sorted in ID order.
'''
K = len(probs)
q = np.zeros(K)
J = np.zeros(K, dtype=np.int)
"""
J is the alias array, recording the alias's corresponding discrete integer
"""
smaller = []
larger = []
for kk, prob in enumerate(probs):
q[kk] = K*prob
if q[kk] < 1.0:
smaller.append(kk)
else:
larger.append(kk)
while len(smaller) > 0 and len(larger) > 0:
small = smaller.pop()
large = larger.pop()
J[small] = large
q[large] = q[large] + q[small] - 1.0
if q[large] < 1.0:
smaller.append(large)
else:
larger.append(large)
"""
this part of code, needs to prove that, the alias array will eventually form and exit the loop.
however, see the code of line 147 and line 148, that makes most of the alias method outstanding strength.
"""
return J, q
def alias_draw(J, q):
'''
Draw sample from a non-uniform discrete distribution using alias sampling.
'''
K = len(J)
kk = int(np.floor(np.random.rand()*K))
if np.random.rand() < q[kk]:
return kk
else:
return J[kk]
上面的代码理解,主要是需要理解alias method在生成满足 离散随机变量 的分布律的随机值的过程中前的预处理过程alias_setup
,以及生成随机值的alias_draw
函数。
这其中,alias_setup
的执行时间在 \(O(n\log n)\) ,alias_draw
的复杂性是 \(O(1)\) 。alias_method的参考资料,在代码中指出的Sampling外,还有一篇CSDN上的博客及其英文原博客。
Node2vec 代码分析的更多相关文章
- Android代码分析工具lint学习
1 lint简介 1.1 概述 lint是随Android SDK自带的一个静态代码分析工具.它用来对Android工程的源文件进行检查,找出在正确性.安全.性能.可使用性.可访问性及国际化等方面可能 ...
- pmd静态代码分析
在正式进入测试之前,进行一定的静态代码分析及code review对代码质量及系统提高是有帮助的,以上为数据证明 Pmd 它是一个基于静态规则集的Java源码分析器,它可以识别出潜在的如下问题:– 可 ...
- [Asp.net 5] DependencyInjection项目代码分析-目录
微软DI文章系列如下所示: [Asp.net 5] DependencyInjection项目代码分析 [Asp.net 5] DependencyInjection项目代码分析2-Autofac [ ...
- [Asp.net 5] DependencyInjection项目代码分析4-微软的实现(5)(IEnumerable<>补充)
Asp.net 5的依赖注入注入系列可以参考链接: [Asp.net 5] DependencyInjection项目代码分析-目录 我们在之前讲微软的实现时,对于OpenIEnumerableSer ...
- 完整全面的Java资源库(包括构建、操作、代码分析、编译器、数据库、社区等等)
构建 这里搜集了用来构建应用程序的工具. Apache Maven:Maven使用声明进行构建并进行依赖管理,偏向于使用约定而不是配置进行构建.Maven优于Apache Ant.后者采用了一种过程化 ...
- STM32启动代码分析 IAR 比较好
stm32启动代码分析 (2012-06-12 09:43:31) 转载▼ 最近开始使用ST的stm32w108芯片(也是一款zigbee芯片).开始看他的启动代码看的晕晕呼呼呼的. 还好在c ...
- 常用 Java 静态代码分析工具的分析与比较
常用 Java 静态代码分析工具的分析与比较 简介: 本文首先介绍了静态代码分析的基 本概念及主要技术,随后分别介绍了现有 4 种主流 Java 静态代码分析工具 (Checkstyle,FindBu ...
- SonarQube-5.6.3 代码分析平台搭建使用
python代码分析 官网主页: http://docs.sonarqube.org/display/PLUG/Python+Plugin Windows下安装使用: 快速使用: 1.下载jdk ht ...
- angular代码分析之异常日志设计
angular代码分析之异常日志设计 错误异常是面向对象开发中的记录提示程序执行问题的一种重要机制,在程序执行发生问题的条件下,异常会在中断程序执行,同时会沿着代码的执行路径一步一步的向上抛出异常,最 ...
随机推荐
- 记2019年目标之一没有996的大数据分析BI实战历程
本文略长,阅读大约需要10分钟. 懵懵懂懂的学习了python,然后一发不可收拾的爱上了python大数据分析,慢慢的走进了大数据的学堂,学习如何大数据挖掘,大数据分析,到BI系统建设使用. 大数据的 ...
- MySQL----MySQL数据库入门----第一章 数据库入门
第一章 数据库入门 1.1 数据库基础知识 1.1.1 数据库概述 数据不仅包括普通意义上的数字,还包括文字.图像.声音等.也就是说,凡是在计算机中用来描述事物的记录都可称作数据. 数据库的基本特点: ...
- vs code 修改文件的缩进
百度这个问题的都是强迫症患者. 前人代码是2个空格缩进,我习惯3个, step1:打开 文件 —> 首选项 —> 设置,进入用户设置 step2:设置缩进量,(加两句代码) step3 ...
- css中可以继承的属性
声明 : 本文源于https://www.cnblogs.com/thislbq/p/5882105.html CSS中可以和不可以继承的属性 一.无继承性的属性 1.display:规定元素应该 ...
- Hadoop HA 高可用集群搭建
一.首先配置集群信息 vi /etc/hosts 二.安装zookeeper 1.解压至/usr/hadoop/下 .tar.gz -C /usr/hadoop/ 2.进入/usr/hadoop/zo ...
- 【 C 】高级字符串查找之 strspn 和 strcspn 的思考
我的CSDN博客 strspn 这个库函数是真的很难理解,看了很多中文描述,反正都是不知所云,给出一系列的例子,结果也是让我瞠目结舌,荒唐.荒谬.荒诞! 特此记录理解过程,最后竟然是百度百科让我明白了 ...
- 实验四: Android程序设计
实验四 Android程序设计 1 实验目的及要求 1.安装 Android Stuidio. 2.完成Hello World, 要求修改res目录中的内容,Hello World后要显示自己的学号. ...
- 20155327 2016-2017-2《Java程序设计》课程总结
20155327 2016-2017-2<Java程序设计>课程总结 每周作业链接汇总 预备作业1:http://www.cnblogs.com/l97----/p/6160983.htm ...
- 虚拟机与Linux的初体验
很早的时候就知道虚拟机这个神奇东西的存在,但也仅仅是只闻其名,未见其身.后来在信息安全素质教育的这门课程上,为了做木马实验.暴力破解实验以及邮件窃取实验,这才比较直接的接触到了虚拟机.当我看着在另一个 ...
- ios 9.1以后 添加libz.dylib 方法
1. 进入你项目的build phases 2.点击+号在弹出的对话框选择addother 3.在弹出的对话框中输入"cmd"+"shift"+"g& ...