BZOJ5314 [Jsoi2018]潜入行动 【背包类树形dp】
题目链接
题解
设\(f[i][j][0|1][0|1]\)表示\(i\)为根的子树,用了\(j\)个监测器,\(i\)节点是否被控制,\(i\)节点是否放置的方案数
然后转移即可
\(O(nk^2)\)??
用上子树大小来优化就是\(O(nk)\)的
对于子树大小都超过\(k\)的子树,转移\(O(k^2)\),这样的情况最多出现\(\frac{n}{k}\)次
对于子树大小有一个超过\(k\)的子树,没超过\(k\)的那个子树里每个点贡献\(O(k)\),这样的情况对每个点最多出现一次
实现时需要诸多常数优化,才能在\(BZOJ\)上\(AC\),洛谷上开O2随便过
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<cmath>
#include<map>
#define Redge(u) for (res int k = 0,to; k < ed[u].size(); k++)
#define REP(i,n) for (res int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
#define res register
using namespace std;
const int maxn = 100005,maxm = 105,INF = 1000000000,P = 1000000007;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,K;
vector<int> ed[maxn];
inline void build(int u,int v){
ed[u].push_back(v);
ed[v].push_back(u);
}
inline void add(int& x,LL y){
x += y; x >= P ? x -= P : 0;
}
int f[maxn][maxm][2][2],fa[maxn],siz[maxn];
LL g[maxn][2][2];
void dfs(int u){
siz[u] = 1; f[u][0][0][0] = f[u][1][0][1] = 1;
Redge(u) if ((to = ed[u][k]) != fa[u]){
fa[to] = u; dfs(to);
for (res int i = 0,lim = min(siz[u],K); i <= lim; i++){
g[i][0][0] = f[u][i][0][0],f[u][i][0][0] = 0;
g[i][0][1] = f[u][i][0][1],f[u][i][0][1] = 0;
g[i][1][0] = f[u][i][1][0],f[u][i][1][0] = 0;
g[i][1][1] = f[u][i][1][1],f[u][i][1][1] = 0;
}
for (res int i = 0,lim = min(siz[u],K); i <= lim; i++)
for (res int j = 0,lim2 = min(siz[to],K); j <= lim2 && i + j <= K; j++){
add(f[u][i + j][0][0],g[i][0][0] * f[to][j][1][0] % P);
add(f[u][i + j][0][1],g[i][0][1] * ((f[to][j][0][0] + f[to][j][1][0])) % P);
add(f[u][i + j][1][0],(g[i][1][0] * ((f[to][j][1][0] + f[to][j][1][1])) + g[i][0][0] * f[to][j][1][1]) % P);
add(f[u][i + j][1][1],(g[i][1][1] * ((1ll * (f[to][j][0][0] + f[to][j][0][1]) + 1ll * (f[to][j][1][0] + f[to][j][1][1])) % P) + g[i][0][1] * (1ll * (f[to][j][0][1] + f[to][j][1][1]))) % P);
}
siz[u] += siz[to];
}
}
int main(){
n = read(); K = read();
for (int i = 1; i < n; i++) build(read(),read());
dfs(1);
printf("%d\n",(f[1][K][1][0] + f[1][K][1][1]) % P);
return 0;
}
BZOJ5314 [Jsoi2018]潜入行动 【背包类树形dp】的更多相关文章
- [bzoj5314][Jsoi2018]潜入行动_树形背包dp
潜入行动 bzoj-5314 Jsoi-2018 题目大意:题目链接. 注释:略. 想法: 学长给我们除了一套考试题,三个学长一人一道这是T1. 好吧好吧,傻逼背包...... 复杂度$O(nk)$. ...
- [loj2546][JSOI2018]潜入行动(树形DP)
题目描述 外星人又双叒叕要攻打地球了,外星母舰已经向地球航行!这一次,JYY 已经联系好了黄金舰队,打算联合所有 JSOIer 抵御外星人的进攻. 在黄金舰队就位之前,JYY 打算事先了解外星人的进攻 ...
- BZOJ5314: [Jsoi2018]潜入行动
BZOJ5314: [Jsoi2018]潜入行动 https://lydsy.com/JudgeOnline/problem.php?id=5314 分析: 裸树形背包,设\(f[x][i][0/1] ...
- BZOJ5314: [Jsoi2018]潜入行动 (树形DP)
题意:一棵树选择恰好k个结点放置监听器 每个监听器只能监听相邻的节点 问能使得所有节点被监听的种类数 题解:反正就是很well-known的树形DP了 至于时间复杂度为什么是nk 不会不学 很好想到四 ...
- POJ3345 Bribing FIPA 【背包类树形dp】
题目链接 POJ 题解 背包树形dp板题 就是读入有点无聊,浪费了很多青春 #include<iostream> #include<cstdio> #include<cm ...
- 洛谷$2014$ 选课 背包类树形$DP$
luogu Sol 阶段和状态都是树形DP板子题,这里只讲一下背包的部分(转移)叭 它其实是一个分组背包模型,具体理解如下: 对于一个结点x,它由它的子结点y转移而来 在子结点y为根的树中可以选不同数 ...
- CTSC1998 选课(背包类树形Dp)
题意: 给出 n 节课的先修课号以及学分(先修课号指的是在学习某节课时先需要学习的课程),求学 m 节课的最大学分. 细节: 1.对于课程 a 其先修课号为 b ,对于课程 b 其先修课号为 c ,则 ...
- luogu2014 选课 背包类树形DP
题目大意:有N门功课,每门课有个学分,每门课有一门或没有直接先修课(若课程a是课程b的先修课即只有学完了课程a,才能学习课程b).一个学生要从这些课程里选择M门课程学习,问他能获得的最大学分是多少? ...
- CH5402 选课【树形DP】【背包】
5402 选课 0x50「动态规划」例题 描述 学校实行学分制.每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分.学校开设了 N(N≤300) 门的选修课程,每个学生可选课程的数量 M 是 ...
随机推荐
- SQL基本的45题
-- 查询Student表中的所有记录的Sname.Ssex和Class列.SELECT Sname,Ssex,Class from student -- 查询教师所有的单位即不重复的Depart列. ...
- C# VS,连接到oracle 报要升级到8.多少版本的错
1:确定服务器的oracle版本 2:本地的客户端版本要和服务器一致 3:操作系统位数要一致
- Python单元测试--unittest(一)
unittest模块是Python中自带的一个单元测试模块,我们可以用来做代码级的单元测试. 在unittest模块中,我们主要用到的有四个子模块,他们分别是: 1)TestCase:用来写编写逐条的 ...
- 11-Dockerfile构建镜像
用 Dockerfile 创建上节的 ubuntu-with-vi,其内容则为: FROM ubuntu RUN apt-get update && apt-get install v ...
- TW实习日记:第五天
今天可以说是非常忙的一天了,要再项目中实现微信相关的功能:授权登录以及扫码登录,还有就是自建应用的发送消息.首先功能代码其实在经过了几天的学习之后并没有很难,但是最让我难受的是在项目中去加代码,首先s ...
- IO多路复用(一)-- Select、Poll、Epoll
在上一篇博文中提到了五种IO模型,关于这五种IO模型可以参考博文IO模型浅析-阻塞.非阻塞.IO复用.信号驱动.异步IO.同步IO,本篇主要介绍IO多路复用的使用和编程. IO多路复用的概念 多路复用 ...
- OA系统与Exchange 日历打通
目前我碰到好几个案例是希望将客户以后的OA系统与Exchange中的日历系统相结合,比如致远或者泛微的OA系统. 客户的需求如下: 1.有了OA系统 2.客户使用Outlook当邮件客户端 3.客户希 ...
- 自然语言处理 - 如何通俗地理解TFIDF?
本博客属个人学习笔记,如有疏漏,欢迎在评论留言指出~转载请注明. 在自然语言处理中,TFIDF常常被人提及.很多材料都提及TFIDF中的“普遍重要性”,但很少有材料去简单解释其中的原理.TFIDF其实 ...
- WeakHashMap介绍
WeakHashMap简介 WeakHashMap 继承于AbstractMap,实现了Map接口. 和HashMap一样,WeakHashMap 也是一个散列表,它存储的内容也是键值对(key ...
- Yii2 yii\helpers\ArrayHelper
yii\helpers\ArrayHelper 是一个数组辅助类,提供额外的数组功能函数 toArray($object, $properties = [], $recursive = true) C ...