【LGP5161】WD与数列
也是可以用\(SAM\)来做的
我们发现要求原串不相交,那么就要求在差分序列里不相交并且不相邻
考虑一下\(SAM\),暴力做法自然是对每一个节点统计其所有\(endpos\)的影响
既然这样我们为什么不直接启发式合并加线段树合并分类讨论一下呢
于是可休闲了
我们考虑往一个节点里插入一个新的\(endpos\)会产生什么影响
对于那些\(x-endpos>=mxlen+1\)的\(x\),我们这样插入显然是会产生\(x\)的贡献
如果\(x-endpos<mxlen+1\),那么就会产生\(|x-enspos|-1\)的贡献
分情况讨论一下这些贡献就好了
于是同时维护动态开点线段树就好了,合并直接线段树合并
代码
#include<tr1/unordered_map>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define LL long long
#pragma GCC optimize(3)
#pragma GCC optimize("-fcse-skip-blocks")
#pragma GCC optimize("Ofast,no-stack-protector")
const int maxn=6e5+5;
const int R=2e5+5;
const int M=2.2e7;
using namespace std::tr1;
inline int read() {
char c=getchar();int x=0,r=1;
while(c<'0'||c>'9') {if(c=='-') r=-1;c=getchar();}
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return r*x;
}
int n,cnt=1,lst=1,tot,tax[maxn>>1],A[maxn];
unordered_map<int,int> son[maxn];
int len[maxn],fa[maxn];
std::vector<int> pos[maxn];
int a[maxn>>1];
int rt[maxn],l[M],r[M],t[M];
int st[maxn>>1],top;
LL d[M],ans,D,T;
int change(int now,int x,int y,int pos) {
if(!now) {
if(!top) now=++tot;
else now=st[top--];
}
t[now]++,d[now]+=pos;
if(x==y) return now;
int mid=x+y>>1;
if(pos<=mid) l[now]=change(l[now],x,mid,pos);
else r[now]=change(r[now],mid+1,y,pos);
return now;
}
LL ask(int now,int x,int y,int lx,int ry) {
if(!now||x>y) return 0;
if(x<=lx&&y>=ry) return t[now];
int mid=lx+ry>>1;
if(y<=mid) return ask(l[now],x,y,lx,mid);
if(x>mid) return ask(r[now],x,y,mid+1,ry);
return ask(l[now],x,y,lx,mid)+ask(r[now],x,y,mid+1,ry);
}
void query(int now,int x,int y,int lx,int ry) {
if(!now||x>y) return;
if(x<=lx&&y>=ry) {T+=t[now],D+=d[now];return;}
int mid=lx+ry>>1;
if(x<=mid) query(l[now],x,y,lx,mid);
if(y>=mid+1) query(r[now],x,y,mid+1,ry);
}
inline void ins(int c,int k) {
int p=++cnt,f=lst;lst=p;
len[p]=len[f]+1;
pos[p].push_back(k);rt[p]=change(rt[p],1,n-1,k);
while(f&&!son[f][c]) son[f][c]=p,f=fa[f];
if(!f) {fa[p]=1;return;}
int x=son[f][c];
if(len[f]+1==len[x]) {fa[p]=x;return;}
int y=++cnt;len[y]=len[f]+1;
fa[y]=fa[x],fa[x]=fa[p]=y;son[y]=son[x];
while(f&&son[f][c]==x) son[f][c]=y,f=fa[f];
}
int merge(int a,int b,int x,int y) {
if(!a||!b) return a+b;
if(x==y) {t[a]+=t[b];d[a]+=d[b];}
int mid=x+y>>1;
l[a]=merge(l[a],l[b],x,mid);r[a]=merge(r[a],r[b],mid+1,y);
t[a]=t[l[a]]+t[r[a]],d[a]=d[l[a]]+d[r[a]];
return a;
}
int main() {
n=read();
for(re int i=1;i<=n;++i) a[i]=read();
for(re int i=1;i<n;++i) ins(a[i+1]-a[i],i);
for(re int i=1;i<=cnt;++i) tax[len[i]]++;
for(re int i=1;i<n;i++) tax[i]+=tax[i-1];
for(re int i=cnt;i>=0;--i) A[tax[len[i]]--]=i;
for(re int i=cnt;i;--i) {
int x=A[i],F=fa[x];
if(pos[x].size()>pos[F].size()) std::swap(pos[x],pos[F]),std::swap(rt[x],rt[F]);
for(re int j=0;j<pos[x].size();j++) {
int now=pos[x][j];
ans+=ask(rt[F],now+1+len[F],n-1,1,n-1)*(LL)len[F];
ans+=ask(rt[F],1,now-len[F]-1,1,n-1)*(LL)len[F];
T=D=0;query(rt[F],now-len[F],now-1,1,n-1);
ans+=T*((LL)now-1)-D;
T=D=0;query(rt[F],now+1,now+len[F],1,n-1);
ans+=D-T*((LL)now+1);
pos[F].push_back(now);
}
rt[F]=merge(rt[F],rt[x],1,n-1);
}
ans+=(LL)(n-1)*n/2ll;
printf("%lld\n",ans);
return 0;
}
【LGP5161】WD与数列的更多相关文章
- luogu P5161 WD与数列 SAM 线段树合并 启发式合并
LINK:WD与数列 这道题可谓妙绝 我明白了一个增量统计的原理. 原本的想法是:差分之后 显然长度为1的单独统计 长度为2的以及更多就是字符串之间的匹配问题了. 对差分序列建立SAM 由于第一个是一 ...
- 【LUOGU???】WD与数列 sam 启发式合并
题目大意 给你一个字符串,求有多少对不相交且相同的子串. 位置不同算多对. \(n\leq 300000\) 题解 先把后缀树建出来. DFS 整棵树,维护当前子树的 right 集合. 合并两个集合 ...
- [Luogu5161]WD与数列(后缀数组/后缀自动机+线段树合并)
https://blog.csdn.net/WAautomaton/article/details/85057257 解法一:后缀数组 显然将原数组差分后答案就是所有不相交不相邻重复子串个数+n*(n ...
- P5161 WD与数列(后缀自动机+线段树合并)
传送门 没想出来→_→ 首先不难看出要差分之后计算不相交也不相邻的相等子串对数,于是差分之后建SAM,在parent树上用线段树合并维护endpos集合,然后用启发式合并维护一个节点对另一个节点的贡献 ...
- SAM(后缀自动机)总结
“写sam是肯定会去写的,这样才学的了字符串,后缀数组又不会用 >ω<, sam套上数据结构的感觉就像回家一样! 里面又能剖分又能线段树合并,调试又好调,我爱死这种写法了 !qwq” SA ...
- C#求斐波那契数列第30项的值(递归和非递归)
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- BZOJ1500[NOI2005]维修数列
Description Input 输入的第1 行包含两个数N 和M(M ≤20 000),N 表示初始时数列中数的个数,M表示要进行的操作数目.第2行包含N个数字,描述初始时的数列.以下M行,每行一 ...
- PAT 1049. 数列的片段和(20)
给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段.例如,给定数列{0.1, 0.2, 0.3, 0.4},我们有(0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1 ...
- 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...
随机推荐
- RocketMQ异常
rocketMQ下载下来的时候,bin目录下有mqbroker.exe和mqnamesrv.exe两个可执行文件,双击执行都可以成功启动:
- jquery里正则的使用方法及常用的正则验证
本文是一篇关于jquery使用正则来验证输入,及一些常用验证规则的基础文章,适合新手. 假设我们的网页里有这样的一个表单: <input id="aijquery" type ...
- [javaSE] 异常捕获
异常:程序在运行时出现的不正常现象 Throwable |——Error |——Exception 严重级别:Error类和Exception类 异常的处理:try{}catch{}finally{} ...
- springboot之内嵌tomcat修改端口号
第一种: 在配置文件中直接修改 server.port=8089 第二种: 直接定义 TomcatEmbeddedServletContainerFactory,注册bean: @Configurat ...
- 10、springboot之集成druid
在pom.xml中添加 <dependency> <groupId>com.alibaba</groupId> <artifactId>druid< ...
- delphi之读写文件的三种方式
一.Tstrings.Tstringlist procedure TForm1.Button2Click(Sender: TObject); var strlist: TStringList; pat ...
- PowerDesigner16导出SQL时如何添加注释
添加注释方法 https://jingyan.baidu.com/article/47a29f24652e44c0142399c3.html 重点是修改value的值 alter table [%QU ...
- OpenStack IceHouse 部署 - 5 - 网络节点部署
Neutron网络服务(网络节点) 目录 [隐藏] 1 参考 2 前置工作 2.1 调整内核参数 3 安装 4 配置 4.1 keystone对接 4.2 rabbitmq对接 4.3 me ...
- 洛谷 P3391 文艺平衡树
题目描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区间是[2,4]的话,结果是5 2 3 4 1 --b ...
- 微服务架构之spring cloud zipkin
Spring Cloud Zipkin是微服务的链路跟踪组件,帮助详细了解一次request&response的总计时,及每个微服务的消耗时间.微服务名称.异常信息等等过程信息. (一) 版本 ...