先做抽象定义如下:

定义一条数据记录为一个二元组[key, data],key为记录的键值,对于不同的数据记录,key是互不相同的;data为数据记录除key外的数据。

B-tree的特点:

d为大于1的一个正整数,称为B-Tree的度(度可以理解为空间一定的条件下内节点的有效容量,与key大小和data大小有关)。

h为一个正整数,成为B-Tree的高度。

每个非叶子节点由n-1个key和n个指针组成,其中d<=n<=2d。

每个叶子节点最少包含一个key和两个指针,最多包含2d-1个key和2d个指针,叶节点的指针均为null。

所有叶节点具有相同的深度,等于树高h。

key和指针互相间隔,节点两端是指针。

一个节点中的key从左到右递增排序。

所有节点组成树结构。

每个指针要么为null,要么指向领一个节点。

每个节点申请同等大小的空间。

如果某个指针在节点node最左边且不为null,则其指向节点的所有key小于v(key1)v(key1),其中v(key1)v(key1)为node的第一个key的值。

如果某个指针在节点node最右边且不为null,则其指向节点的所有key大于v(keym)v(keym),其中v(keym)v(keym)为node的最后一个key的值。

如果某个指针在节点node的左右相邻key分别是keyikeyi和keyi+1keyi+1且不为null,则其指向节点的所有key小于v(keyi+1)v(keyi+1)且大于v(keyi)v(keyi)。

按key检索数据的算法:从根节点进行二分查找,找到则返回对应节点的数据,否则对相应区间的指针指向的节点递归进行查找,直到找到节点或找到null指针。前者查找成功,后者查找失败。

B+tree的特点:

内节点不存储data,只存储key。

叶子节点不存储指针。

叶子节点与内节点一般大小不同。

叶子节点增加一个指向相邻叶子节点的指针,就形成了带有顺序访问指针的B+Tree。通过这种方式,可以提高区间访问的性能。

基于B+tree的特点,内节点不存储data,意味着出度可以比B-tree更高,而出度越大,索引性能越好。

MyISAM

MyISAM叶子节点的data域存放的是数据记录的地址,检索索引时,如果指定的key存在,则取出data域的地址,然后用这个地址读取记录。这种索引方式叫做“非聚集”。

InnoDB

InnoDB主索引的叶子节点包含了完整的数据记录,这种索引叫做聚集索引。InnoDB的表必须有主键,没有显示指定,系统会自动选择一个列,如果不存在这种列,则自动生成一个隐含字段作为主键。

InnoDB辅助索引data域存储相应记录主键的值而不是地址。

参考文章:http://blog.codinglabs.org/articles/theory-of-mysql-index.html

mysql(六)索引的数据结构的更多相关文章

  1. mysql六:索引原理与慢查询优化

    一 介绍 为何要有索引? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句 ...

  2. MySQL存储索引InnoDB数据结构为什么使用B+树,而不是其他树呢?

    InnoDB的一棵B+树可以存放多少行数据? 答案:约2千万 为什么是这么多? 因为这是可以算出来的,要搞清楚这个问题,先从InnoDB索引数据结构.数据组织方式说起. 计算机在存储数据的时候,有最小 ...

  3. 谈谈MySQL数据库索引

    在分析MySQL数据库索引之前,很多小伙伴对数据结构中的树理解不够深刻.因此我们由浅入深一步步探讨树的演进过程,再一步步引出MySQL数据库索引底层数据结构. 一.二叉树 二叉查找树也称为有序二叉查找 ...

  4. MySQL的索引为什么用B+Tree?InnDB的数据存储文件和MyISAM的有何不同?

    前言 这篇文章的题目,是我真实在面试过程中遇到的问题,某互联网众筹公司在考察面试者MySQL相关知识的第一个问题,我当时还是比较懵的,没想到这年轻人不讲武德,不按套路出牌,一般的问MySQL的相关知识 ...

  5. 数据库索引使用数据结构及算法, 及MySQL不同引擎索引实现

    摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ...

  6. 深入理解Mysql索引底层数据结构与算法

    索引是帮助MySQL高效获取数据的排好序的数据结构 索引数据结构对比 二叉树 左边子节点的数据小于父节点数据,右边子节点的数据大于父节点数据. 如果col2是索引,查找索引为89的行元素,那么只需要查 ...

  7. 深入理解MySQL索引底层数据结构

    作者:IT王小二 博客:https://itwxe.com MySQL 索引相关的数据结构有两种,一种是 B+tree,一种是 Hash,那么为什么在 99.99% 的情况下都使用的是 B+tree索 ...

  8. Mysql索引底层数据结构与算法

    索引是什么 索引是帮助MySQL高效获取数据的排好序的数据结构. 索引存储在文件里 补充知识: 磁盘存取原理: * 寻道时间(速度慢,费时) * 旋转时间(速度较快) 磁盘IO读取效率: * 单次IO ...

  9. mysql 松散索引与紧凑索引扫描(引入数据结构)

    这一篇文章本来应该是放在 mysql 高性能日记中的,并且其优化程度并不高,但考虑到其特殊性和原理(索引结构也在这里稍微讲一下) 一,mysql 索引结构 (B.B+树) 要问到 mysql 的索引用 ...

  10. MySQL索引之数据结构及算法原理

    MySQL索引之数据结构及算法原理 MySQL支持多个存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等.本文只关注BTre ...

随机推荐

  1. C# typeof() 和 GetType()区是什么

    1.typeof(x)中的x,必须是具体的类名.类型名称等,不可以是变量名称. 2.GetType()方法继承自Object,所以C#中任何对象都具有GetType()方法,它的作用和typeof() ...

  2. 20155305 2016-2017-2 《Java程序设计》实验二 Java面向对象程序设计

    实验二 Java面向对象程序设计 实验内容 初步掌握单元测试和TDD 理解并掌握面向对象三要素:封装.继承.多态 初步掌握UML建模 熟悉S.O.L.I.D原则 了解设计模式 实验步骤 单元测试 1. ...

  3. eclipse 打包maven项目的坑

    一.问题: 公司开发了一个项目,需要作为后台服务运行,整个项目的构成是:[maven + spring + eclipse] 在使用打包的时候遇到许多问题: (1)eclipse中maven工具的集成 ...

  4. MySql访客连接设置

    步骤: 1 . 打开命令窗口,切换到mysql安装目录 可以在控制台目录切换,也可以打开所在安装目录后再打开控制台 2 . 执行命令:mysql -u root -p 3 . 无法访问的话,查看防火墙 ...

  5. 对PostgreSQL数据库的hstore类型建立GisT索引的实验

    磨砺技术珠矶,践行数据之道,追求卓越价值回到上一级页面:PostgreSQL基础知识与基本操作索引页    回到顶级页面:PostgreSQL索引页[作者 高健@博客园  luckyjackgao@g ...

  6. dsu on tree总结

    dsu on tree 树上启发式合并.我并不知道为什么要叫做这个名字... 干什么的 可以在\(O(n\log n)\)的时间内完成对子树信息的询问,可横向对比把树按\(dfs\)序转成序列问题的\ ...

  7. cdh中hdfs非ha环境迁移Namenode与secondaryNamenode,从uc机器到阿里;

    1.停掉外部接入服务: 2 NameNode Metadata备份: 2.1 备份fsimage数据,(该操作适用HA和非HA的NameNode),使用如下命令进行备份: [root@cdh01 df ...

  8. Retinex图像增强和暗通道去雾的关系及其在hdr色调恢复上的应用

    很多人都认为retinex和暗通道去雾是八杆子都打不着的增强算法.的确,二者的理论.计算方法都完全迥异,本人直接从二者的公式入手来简单说明一下,有些部分全凭臆想,不对之处大家一起讨论. 首先,为描述方 ...

  9. Unity Lighting - Choosing a Color Space 选择色彩空间(四)

      Choosing a Color Space 选择色彩空间 In addition to selecting a rendering path, it’s important to choose ...

  10. 小白初识 - 归并排序(MergeSort)

    归并排序是一种典型的用分治的思想解决问题的排序方式. 它的原理就是:将一个数组从中间分成两半,对分开的两半再分成两半,直到最终分到最小的单位(即单个元素)的时候, 将已经分开的数据两两合并,并且在合并 ...