1 写在前面

1.1 名词解释

consumer表示服务调用方

provider标示服务提供方,dubbo里面一般就这么讲。

下面的A调用B服务,一般是泛指调用B服务里面的一个接口。

1.2 拓扑图

大写字母表示不同的服务,后面的序号表示同一个服务部署在不同机器的实例。

 

2 从微观角度思考

 

2.1 超时(timeout)

在接口调用过程中,consumer调用provider的时候,provider在响应的时候,有可能会慢,如果provider 10s响应,那么consumer也会至少10s才响应。如果这种情况频度很高,那么就会整体降低consumer端服务的性能。

这种响应时间慢的症状,就会像一层一层波浪一样,从底层系统一直涌到最上层,造成整个链路的超时。

所以,consumer不可能无限制地等待provider接口的返回,会设置一个时间阈值,如果超过了这个时间阈值,就不继续等待。

这个超时时间选取,一般看provider正常响应时间是多少,再追加一个buffer即可。

 

2.2 重试(retry)

超时时间的配置是为了保护服务,避免consumer服务因为provider 响应慢而也变得响应很慢,这样consumer可以尽量保持原有的性能。

但是也有可能provider只是偶尔抖动,那么超时后直接放弃,不做后续处理,就会导致当前请求错误,也会带来业务方面的损失。

那么,对于这种偶尔抖动,可以在超时后重试一下,重试如果正常返回了,那么这次请求就被挽救了,能够正常给前端返回数据,只不过比原来响应慢一点。

重试时的一些细化策略:

重试可以考虑切换一台机器来进行调用,因为原来机器可能由于临时负载高而性能下降,重试会更加剧其性能问题,而换一台机器,得到更快返回的概率也更大一些。

 

2.2.1 幂等(idempotent)

如果允许consumer重试,那么provider就要能够做到幂等。

即,同一个请求被consumer多次调用,对provider产生的影响(这里的影响一般是指某些写入相关的操作) 是一致的。

而且这个幂等应该是服务级别的,而不是某台机器层面的,重试调用任何一台机器,都应该做到幂等。

 

2.3 熔断(circuit break)

重试是为了应付偶尔抖动的情况,以求更多地挽回损失。

可是如果provider持续的响应时间超长呢?

如果provider是核心路径的服务,down掉基本就没法提供服务了,那我们也没话说。 如果是一个不那么重要的服务,却因为这个服务一直响应时间长导致consumer里面的核心服务也拖慢,那么就得不偿失了。

单纯超时也解决不了这种情况了,因为一般超时时间,都比平均响应时间长一些,现在所有的打到provider的请求都超时了,那么consumer请求provider的平均响应时间就等于超时时间了,负载也被拖下来了。

而重试则会加重这种问题,使consumer的可用性变得更差。

因此就出现了熔断的逻辑,也就是,如果检查出来频繁超时,就把consumer调用provider的请求,直接短路掉,不实际调用,而是直接返回一个mock的值。

等provider服务恢复稳定之后,重新调用。

 

2.3.1 简单的熔断处理逻辑

目前我们框架有通过注解使用的熔断器,大家可以参考应用在项目中。

 

2.4 限流(current limiting)

上面几个策略都是consumer针对provider出现各种情况而设计的。

而provider有时候也要防范来自consumer的流量突变问题。

这样一个场景,provider是一个核心服务,给N个consumer提供服务,突然某个consumer抽风,流量飙升,占用了provider大部分机器时间,导致其他可能更重要的consumer不能被正常服务。

所以,provider端,需要根据consumer的重要程度,以及平时的QPS大小,来给每个consumer设置一个流量上线,同一时间内只会给A consumer提供N个线程支持,超过限制则等待或者直接拒绝。

 

2.4.1 资源隔离

provider可以对consumer来的流量进行限流,防止provider被拖垮。

同样,consumer 也需要对调用provider的线程资源进行隔离。 这样可以确保调用某个provider逻辑不会耗光整个consumer的线程池资源。

 

2.4.2 服务降级

降级服务既可以代码自动判断,也可以人工根据突发情况切换。

 

2.4.2.1 consumer 端

consumer 如果发现某个provider出现异常情况,比如,经常超时(可能是熔断引起的降级),数据错误,这是,consumer可以采取一定的策略,降级provider的逻辑,基本的有直接返回固定的数据。

 

2.4.2.2 provider 端

当provider 发现流量激增的时候,为了保护自身的稳定性,也可能考虑降级服务。

比如,1,直接给consumer返回固定数据,2,需要实时写入数据库的,先缓存到队列里,异步写入数据库。

 

3 从宏观角度重新思考

宏观包括比A -> B 更复杂的长链路。

长链路就是 A -> B -> C -> D这样的调用环境。

而且一个服务也会多机部署,A 服务实际会存在 A1,A2,A3 …

微观合理的问题,宏观未必合理。

下面的一些讨论,主要想表达的观点是:如果系统复杂了,系统的容错配置要整体来看,整体把控,才能做到更有意义。

 

3.1 超时

如果A给B设置的超时时间,比B给C设置的超时时间短,那么肯定不合理把,A超时时间到了直接挂断,B对C支持太长超时时间没意义。

R表示服务consumer自身内部逻辑执行时间,TAB表示consumer A开始调用provider B到返回的时间 。

那么那么TAB > RB + TBC 才对。

 

3.2 重试

重试跟超时面临的问题差不多。

B服务一般100ms返回,所以A就给B设置了110ms的超时,而B设置了对C的一次重试,最终120ms正确返回了,但是A的超时时间比较紧,所以B对C的重试被白白浪费了。

A也可能对B进行重试,但是由于上一条我们讲到的,可能C确实性能不好,每次B重试一下就OK,但是A两次重试其实都无法正确的拿到结果。

N标示设置的重试次数

修正一下上面section的公式,TAB > RB+TBC * N。

虽然这个公式本身没什么问题,但是,如果站在长链路的视角来思考,我们需要整体规划每个服务的超时时间和重试次数,而不是仅仅公式成立即可。

比如下面情况:

A -> B -> C。

RB = 100ms,TBC=10ms

B是个核心服务,B的计算成本特别大,那么A就应该尽量给B长一点的超时时间,而尽量不要重试调用B,而B如果发现C超时了,B可以多调用几次C,因为重试C成本小,而重试B成本则很高。 so …

 

3.3 熔断

A -> B -> C,如果C出现问题了,那么B熔断了,则A就不用熔断了。

 

3.4 限流

B只允许A以QPS<=5的流量请求,而C却只允许B以QPS<=3的qps请求,那么B给A的设定就有点大,上游的设置依赖下游。

而且限流对QPS的配置,可能会随着服务加减机器而变化,最好是能在集群层面配置,自动根据集群大小调整。

 

3.5 服务降级

服务降级这个问题,如果从整体来操作,

1,一定是先降级优先级地的接口,两权相害取其轻

2,如果服务链路整体没有性能特别差的点,比如就是外部流量突然激增,那么就从外到内开始降级。

3如果某个服务能检测到自身负载上升,那么可以从这个服务自身做降级。

 

3.6 涟漪

A -> B -> C,如果C服务出现抖动,而B没有处理好这个抖动,造成B服务也出现了抖动,A调用B的时候,也会出现服务抖动的情况。

这个暂时的不可用状态就想波浪一样从底层传递到了上层。

所以,从整个体系的角度来看,每个服务一定要尽量控制住自己下游服务的抖动,不要让整个体系跟着某个服务抖动。

 

3.7 级联失败(cascading failure)

系统中有某个服务出现故障,不可用,传递性地导致整个系统服务不可用的问题。

跟上面涟漪(自造词)的区别也就是严重性的问题。

涟漪描述服务偶发的不稳定层层传递,而级联失败基本是导致系统不可用。 一般,前者可能会因为短时间内恢复而未引起重视,而后者一般会被高度重视。

 

3.8 关键路径

关键路径就是,你的服务想正常工作,必须要完整依赖的下游服务链,比如数据库一般就是关键路径里面的一个节点。

尽量减少关键路径依赖的数量,是提高服务稳定性的一个措施。

数据库一般在服务体系的最底层,如果你的服务可以会自己完整缓存使用的数据,解除数据库依赖,那么数据库挂掉,你的服务就暂时是安全的。

 

3.9 最长路径

想要优化你的服务的响应时间,需要看服务调用逻辑里面的最长路径,只有缩短最长时间路径的用时,才能提高你的服务的性能。

摘自:https://www.cnblogs.com/raoshaoquan/articles/6636067.html

dubbo熔断,限流,服务降级的更多相关文章

  1. 高可用服务设计之二:Rate limiting 限流与降级

    <高可用服务设计之二:Rate limiting 限流与降级> <nginx限制请求之一:(ngx_http_limit_conn_module)模块> <nginx限制 ...

  2. 微服务熔断限流Hystrix之流聚合

    简介 上一篇介绍了 Hystrix Dashboard 监控单体应用的例子,在生产环境中,监控的应用往往是一个集群,我们需要将每个实例的监控信息聚合起来分析,这就用到了 Turbine 工具.Turb ...

  3. 阿里熔断限流Sentinel研究

    1. 阿里熔断限流Sentinel研究 1.1. 功能特点 丰富的应用场景:例如秒杀(即突发流量控制在系统容量可以承受的范围).消息削峰填谷.集群流量控制.实时熔断下游不可用应用等 完备的实时监控:S ...

  4. 0.9.0.RELEASE版本的spring cloud alibaba sentinel限流、降级处理实例

    先看服务提供方的,我们在原来的sentinel实例(参见0.9.0.RELEASE版本的spring cloud alibaba sentinel实例)上加上限流.降级处理,三板斧只需在最后那一斧co ...

  5. dubbo 熔断,限流,降级

    1 写在前面 1.1 名词解释 consumer表示服务调用方 provider标示服务提供方,dubbo里面一般就这么讲. 下面的A调用B服务,一般是泛指调用B服务里面的一个接口. 1.2 拓扑图 ...

  6. Dubbo学习系列之十(Sentinel之限流与降级)

    各位看官,先提个问题,如果让你设计一套秒杀系统,核心要点是啥???我认为有三点:缓存.限流和分离.想当年12306大面积崩溃,还有如今的微博整体宕机情况,感觉就是限流降级没做好,"用有限的资 ...

  7. SpringCloud微服务:Sentinel哨兵组件,管理服务限流和降级

    源码地址:GitHub·点这里||GitEE·点这里 一.基本简介 1.概念描述 Sentinel 以流量为切入点,从流量控制.熔断降级.系统负载保护等多个维度保护服务的稳定性.包括核心的独立类库,监 ...

  8. Envoy熔断限流实践(二)Rainbond基于RLS服务全局限流

    Envoy 可以作为 Sevice Mesh 微服务框架中的代理实现方案,Rainbond 内置的微服务框架同样基于 Envoy 实现.本文所描述的全局限速实践也是基于 Envoy 已有的方案所实现. ...

  9. Sentinel限流、降级配置详解

    安装Sentinel 下载sentinel-dashboard-1.8.2.jar 安装有jdk环境,8080端口未被占用 在jar包所在目录打开cmd,输入命令启动:java -jar sentin ...

  10. 微服务熔断限流Hystrix之Dashboard

    简介 Hystrix Dashboard是一款针对Hystrix进行实时监控的工具,通过Hystrix Dashboard可以直观地看到各Hystrix Command的请求响应时间,请求成功率等数据 ...

随机推荐

  1. 【转】DevOps的前世今生

    转自:http://www.infoq.com/cn/news/2016/09/learn-devops-from-reports 目前在国外,互联网巨头如Google.Facebook.Amazon ...

  2. Egret3D初步笔记二 (Unity导出场景使用)

    一 Scene 根据上一节的继续.在导入unity4.7.1_Egret3D_Dll.unitypackage后. 在Unity中双击打开Assets/Egret3D/Example下的Example ...

  3. xcode7/ios9中 低版本app运行时,屏幕上下出现黑边的问题

    xcode从低版本升级至 7.0或更高版本后,某些低版本app再次编译运行后,发现app在设备上运行时,会在上端和底部 出现黑边的现象.这导致app的展示界面跟缩水了一样,变得十分丑陋. 对于这一问题 ...

  4. SMGP3.0协议的概念知识

    该项目主页在https://code.google.com/archive/p/smgp/,可以使用VPN进去看看,该项目是开源的,根据SMGP3.0协议写的API,我们要用的话直接调用就好了,这里主 ...

  5. jsp实现文件下载的代码(转载)

    Java代码   OutputStream out=response.getOutputStream(); byte by[]=new byte[500]; File fileLoad=new Fil ...

  6. javascript飞机大战-----006创建敌机

    先写一个敌机类 /* 创建敌机: */ function Enemy(blood,speed,imgs){ //敌机left this.left = 0; //敌机top this.top = 0; ...

  7. 170727、MySQL查询性能优化

    MySQL查询性能优化 MySQL查询性能的优化涉及多个方面,其中包括库表结构.建立合理的索引.设计合理的查询.库表结构包括如何设计表之间的关联.表字段的数据类型等.这需要依据具体的场景进行设计.如下 ...

  8. DetailView内匿名函数不可用

    DetailView yii\widgets\DetailView 小部件显示的是单一 yii\widgets\DetailView::$model 数据的详情. 它非常适合用常规格式显示一个模型(例 ...

  9. HDU 4238 You Are the One

    You Are the One Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...

  10. 洛谷P3809 后缀排序【后缀数组】【模板】

    题目背景 这是一道模板题. 题目描述 读入一个长度为 nn 的由大小写英文字母或数字组成的字符串,请把这个字符串的所有非空后缀按字典序从小到大排序,然后按顺序输出后缀的第一个字符在原串中的位置.位置编 ...