转自:https://blog.csdn.net/Vivianyzw/article/details/81061765

东风的地方

1. 直接加载预训练模型

在训练的时候可能需要中断一下,然后继续训练,也就是简单的从保存的模型中加载参数权重:


  1. net = SNet()
  2. net.load_state_dict(torch.load("model_1599.pkl"))

这种方式是针对于之前保存模型时以保存参数的格式使用的:

torch.save(net.state_dict(), "model/model_1599.pkl")

pytorch官网更推荐上述模型保存方法,也据说这种方式比下一种更快一点。

下面介绍第二种模型保存和加载的方式:


  1. net = SNet()
  2. torch.save(net, "model_1599.pkl")
  3. snet = torch.load("model_1599.pkl")

这种方式会将整个网络保存下来,数据量会更大,会消耗更多的时间,占用内存也更高。

2. 加载一部分预训练模型

模型可能是一些经典的模型改掉一部分,比如一般算法中提取特征的网络常见的会直接使用vgg16的features extraction部分,也就是在训练的时候可以直接加载已经在imagenet上训练好的预训练参数,这种方式实现如下:


  1. net = SNet()
  2. model_dict = net.state_dict()
  3. vgg16 = models.vgg16(pretrained=True)
  4. pretrained_dict = vgg16.state_dict()
  5. pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
  6. model_dict.update(pretrained_dict)
  7. net.load_state_dict(model_dict)

也就是在网络中state_dict部分,属于vgg16的,替换成vgg16预训练模型里的参数(代码里的k:v for k,v in pretrained_dict.items() if k in model_dict),其他保持不变。

3. 微调经典网络

因为pytorch中的torchvision给出了很多经典常用模型,并附加了预训练模型。利用好这些训练好的基础网络可以加快不少自己的训练速度。

首先比如加载vgg16(带有预训练参数的形式):


  1. import torchvision.models as models
  2. vgg16 = models.vgg16(pretrained=True)

比如,网络第一层本来是Conv2d(3, 64, 3, 1, 1),想修改成Conv2d(4, 64, 3, 1 ,1),那直接赋值就可以了:


  1. import torch.nn as nn
  2. vgg16.features[0]=nn.Conv2d(4, 64, 3, 1, 1)

4. 修改经典网络

这个比上面微调修改的地方要多一些,但是想介绍一下这样的修改方式。

先简单介绍一下我需要需改的部分,在vgg16的基础模型下,每一个卷积都要加一个dropout层,并将ReLU激活函数换成PReLU,最后两层的Pooling层stride改成1。直接上代码:


  1. def feature_layer():
  2. layers = []
  3. pool1 = ['4', '9', '16']
  4. pool2 = ['23', '30']
  5. vgg16 = models.vgg16(pretrained=True).features
  6. for name, layer in vgg16._modules.items():
  7. if isinstance(layer, nn.Conv2d):
  8. layers += [layer, nn.Dropout2d(0.5), nn.PReLU()]
  9. elif name in pool1:
  10. layers += [layer]
  11. elif name == pool2[0]:
  12. layers += [nn.MaxPool2d(2, 1, 1)]
  13. elif name == pool2[1]:
  14. layers += [nn.MaxPool2d(2, 1, 0)]
  15. else:
  16. continue
  17. features = nn.Sequential(*layers)
  18. #feat3 = features[0:24]
  19. return features

大概的思路就是,创建一个新的网络(layers列表), 遍历vgg16里每一层,如果遇到卷积层(if isinstance(layer, nn.Conv2d)就先把该层(Conv2d)保持原样加进去,随后增加一个dropout层,再加一个PReLU层。然后如果遇到最后两层pool,就修改响应参数加进去,其他的pool正常加载。 最后将这个layers列表转成网络的nn.Sequential的形式,最后返回features。然后再你的新的网络层就可以用以下方式来加载:


  1. class SNet(nn.Module):
  2. def __init__(self):
  3. super(SNet, self).__init__()
  4. self.features = feature_layer()
  5. def forward(self, x):
  6. x = self.features(x)
  7. return x

[Pytorch]Pytorch加载预训练模型(转)的更多相关文章

  1. pytorch中修改后的模型如何加载预训练模型

    问题描述 简单来说,比如你要加载一个vgg16模型,但是你自己需要的网络结构并不是原本的vgg16网络,可能你删掉某些层,可能你改掉某些层,这时你去加载预训练模型,就会报错,错误原因就是你的模型和原本 ...

  2. 使用Huggingface在矩池云快速加载预训练模型和数据集

    作为NLP领域的著名框架,Huggingface(HF)为社区提供了众多好用的预训练模型和数据集.本文介绍了如何在矩池云使用Huggingface快速加载预训练模型和数据集. 1.环境 HF支持Pyt ...

  3. pytorch加载预训练模型参数的方式

    1.直接使用默认程序里的下载方式,往往比较慢: 2.通过修改源代码,使得模型加载已经下载好的参数,修改地方如下: 通过查找自己代码里所调用网络的类,使用pycharm自带的函数查找功能(ctrl+鼠标 ...

  4. Tensorflow加载预训练模型和保存模型(ckpt文件)以及迁移学习finetuning

    转载自:https://blog.csdn.net/huachao1001/article/details/78501928 使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我 ...

  5. Tensorflow加载预训练模型和保存模型

    转载自:https://blog.csdn.net/huachao1001/article/details/78501928 使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我 ...

  6. PyTorch模型加载与保存的最佳实践

    一般来说PyTorch有两种保存和读取模型参数的方法.但这篇文章我记录了一种最佳实践,可以在加载模型时避免掉一些问题. 第一种方案是保存整个模型: 1 torch.save(model_object, ...

  7. PyTorch数据加载处理

    PyTorch数据加载处理 PyTorch提供了许多工具来简化和希望数据加载,使代码更具可读性. 1.下载安装包 scikit-image:用于图像的IO和变换 pandas:用于更容易地进行csv解 ...

  8. 【小白学PyTorch】5 torchvision预训练模型与数据集全览

    文章来自:微信公众号[机器学习炼丹术].一个ai专业研究生的个人学习分享公众号 文章目录: 目录 torchvision 1 torchvision.datssets 2 torchvision.mo ...

  9. pytorch数据加载器

    class torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, num_workers=0, ...

随机推荐

  1. 以用户名注册来分析三种Action获取数据的方式

    1.注入属性 直接注入属性: public String userName; public String getUserName() { return userName; } public void ...

  2. 【BZOJ4401/3004】块的计数/吊灯 乱搞

    [BZOJ4401]块的计数 Description 小Y最近从同学那里听说了一个十分牛B的高级数据结构——块状树.听说这种数据结构能在sqrt(N)的时间内维护树上的各种信息,十分的高效.当然,无聊 ...

  3. shell出现syntax error near unexpected token `<' 解决方法

    最新在看一个shell资料时,按照教材,却出现如下错误,不能运行 如下,简单的脚本: #!/bin/bash cat |while read line do echo $line done < ...

  4. 微信小程序 --- 缓存数据

    保存数据  /  读取数据  /  删除数据  /  数据异步操作 每一个微信小程序都可以有自己的本地缓存,可以通过wx.setStorage( wx.setStorageSync) ,wx.getS ...

  5. ajax跨域终极解决办法!

    在使用 ajax 的时候,往往需要通过 ajax 跨域请求一些? 但是 XMLHTTPRequest 是不支持跨域的,所以产生了 JSONP 这个东西来解决跨域,当然解决跨域的方式有很多种.... 第 ...

  6. CHECKSUM比较两表字段值差异

    CHECKSUM 返回在表的行上或在表达式列表上计算的校验值.CHECKSUM 用于生成哈希索引. 语法 CHECKSUM ( * | expression [ ,...n ] ) 参数 * 指定在表 ...

  7. 2.06StuModify.aspx(修改姓名,性别,所在班级)

    meta http-equiv="Content-Type" content="text/html; charset=utf-8"/> <title ...

  8. 磁盘 I/O 性能监控的指标

    指标 1:每秒 I/O 数(IOPS 或 tps) 对于磁盘来说,一次磁盘的连续读或者连续写称为一次磁盘 I/O, 磁盘的 IOPS 就是每秒磁盘连续读次数和连续写次数之和.当传输小块不连续数据时,该 ...

  9. ArcEngine和GDAL读写栅格数据机制对比(一)

    最近应用AE开发插值和栅格转等值线的程序,涉及到栅格读写的有关内容.联想到ArcGIS利用了GDAL的某些东西,从AE的OMD中也发现RasterDataset和RasterBand这些命名和GDAL ...

  10. 使用JavaScript修改浏览器URL地址栏的实现代码

    现在的浏览器里,有一个十分有趣的功能,你可以在不刷新页面的情况下修改浏览器URL;在浏览过程中.你可以将浏览历史储存起来,当你在浏览器点击后退按钮的时候,你可以冲浏览历史上获得回退的信息,这听起来并不 ...