题目描述

设A和B是两个字符串。我们要用最少的字符操作次数,将字符串A转换为字符串B。这里所说的字符操作共有三种:

1、删除一个字符;

2、插入一个字符;

3、将一个字符改为另一个字符;

!皆为小写字母!

输入输出格式

输入格式:

第一行为字符串A;第二行为字符串B;字符串A和B的长度均小于2000。

输出格式:

只有一个正整数,为最少字符操作次数。

输入输出样例

输入样例#1: 复制

sfdqxbw
gfdgw
输出样例#1: 复制

4

设dp[ i ][ j ]表示a串1~i转换为b串1~j所需的最小cost;
那么转移的时候可以从dp[ i-1 ][ j ] or dp[ i ][ j-1 ] or dp[ i-1 ][ j-1 ]转移到dp[ i ][ j ];
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ char a[3003], b[3003];
int dp[2002][2002];
int main()
{
// ios::sync_with_stdio(0);
rdstr(a); rdstr(b);
int lena = strlen(a);
int lenb = strlen(b);
for (int i = 1; i <= lena; i++)dp[i][0] = i;
for (int j = 1; j <= lenb; j++)dp[0][j] = j;
for (int i = 1; i <= lena; i++) {
for (int j = 1; j <= lenb; j++)dp[i][j] = inf;
}
for (int i = 1; i <= lena; i++) {
for (int j = 1; j <= lenb; j++) {
if (a[i-1] == b[j-1]) {
dp[i][j] = dp[i - 1][j - 1];
}
else {
dp[i][j] = min(min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;
}
}
}
printf("%d\n", dp[lena][lenb]);
return 0;
}

  


编辑距离 区间dp的更多相关文章

  1. 区间dp总结篇

    前言:这两天没有写什么题目,把前两周做的有些意思的背包题和最长递增.公共子序列写了个总结.反过去写总结,总能让自己有一番收获......就区间dp来说,一开始我完全不明白它是怎么应用的,甚至于看解题报 ...

  2. 【BZOJ-4380】Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

  3. 【POJ-1390】Blocks 区间DP

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5252   Accepted: 2165 Descriptio ...

  4. 区间DP LightOJ 1422 Halloween Costumes

    http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...

  5. BZOJ1055: [HAOI2008]玩具取名[区间DP]

    1055: [HAOI2008]玩具取名 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1588  Solved: 925[Submit][Statu ...

  6. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

  7. HDU5900 QSC and Master(区间DP + 最小费用最大流)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...

  8. BZOJ 1260&UVa 4394 区间DP

    题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...

  9. Uva 10891 经典博弈区间DP

    经典博弈区间DP 题目链接:https://uva.onlinejudge.org/external/108/p10891.pdf 题意: 给定n个数字,A和B可以从这串数字的两端任意选数字,一次只能 ...

随机推荐

  1. JavaScript RegExp.exec() 方法

    定义和用法: exec() 方法用于检索字符串中的正则表达式的匹配. 语法: RegExpObject.exec(string); RegExpObject:必须参数,正则表达式: string:必须 ...

  2. Error generating final archive: Unable to get debug signature key

    在调试程序时,发生下面的错误: Error generating final archive: Unable to get debug signature key 解决办法: 删除下面的文件: C:\ ...

  3. Button或者ImageButton的背景设为透明或者半透明

    Button或者ImageButton的背景设为透明或者半透明 半透明<Button android:background="#e0000000" ... /> 透明& ...

  4. JavaScript 语法总结2

    1. 对象的toString()和valueOf(). - toString() 和Java中的toString() 一样 - valueOf(), 和toString() 都是用来进行类型转换的方法 ...

  5. 百度地图point 转化成经纬度

    百度1.0表示的坐标点,直接在1.3的api上使用坐标无法定位,研究了一阵子百度拾取坐标系统的源码才知道,原来1.0的point是Pixel,调用js的转化代码就搞定了 转化方法如下: var b = ...

  6. python之使用API(WEB应用编程接口)

    1.处理API响应 import requests #执行API调用并存储响应 url = "https://api.github.com/search/repositories?q=lan ...

  7. .NET基础 (19)多线程

    多线程编程的基本概念1 请解释操作系统层面上的线程和进程2 多线程程序在操作系统里是并行执行的吗3 什么是纤程 .NET中的多线程1 如何在.NET程序中手动控制多个线程2 如何使用.NET的线程池3 ...

  8. .NET框架源码解读之SSCLI的调试支持

    阅读源码一个比较快的手段就是在调试器里阅读,这样可以在实际运行SSCLI的过程中,通过堆栈跟踪的方式查看完整的程序执行路径. 当在SSCLI环境里执行一个托管程序的时候,堆栈上通常有托管和非托管代码同 ...

  9. Solr之functionQuery(函数查询)

    Solr函数查询 让我们可以利用 numeric域的值 或者 与域相关的的某个特定的值的函数,来对文档进行评分. 怎样使用函数查询 这里主要有两种方法可以使用函数查询,这两种方法都是通过solr ht ...

  10. mysql 删表引出的问题

    背景 将测试环境的表同步到另外一个数据库服务器中,但有些表里面数据巨大,(其实不同步该表的数据就行,当时没想太多),几千万的数据!! 步骤 1. 既然已经把数据同步过来的话,那就直接delete掉就行 ...