Prufer序列与树的计数(坑)
\(prufer\)序列:
无根树转\(prufer\)序列:
不断找编号最小的叶子节点,删掉并在序列中加入他相连的节点。
\(prufer\)转无根树:
找到在目前\(prufer\)序列中未出现且未使用的编号最小的的节点与当前位相连,当前位从\(prufer\)序列中删除,节点标为已使用,剩余最后两个未使用的节点相连。
性质:
\(1.prufer\)序列中某个编号出现的次数就等于这个编号的节点在无根树中的度数-1。
\(2.\)一棵n个节点的无根树唯一地对应了一个长度为\(n-2\)的数列,\(n\)个点的无根树有\(n^{(n-2)}\)种。
树的计数
\(1.\)n个节点度数依次为\(D_1,D_2,D_3...D_n\)的无根树的种类有(可重集的组合):
\[\frac{(n-2)!}{((D_{1}-1)!\times...\times(D_{n}-1)!)}\]
\(2.\)在\(1\)的基础上,有\(m\)个节点度数未知,剩余\(left\)个位置(prufer中,共n-2个),种类有(先把left挑出来\(\times\)再让m个点分left位置,乘法原理):
\[{(n-2)!\times m^{left}}\over{((D_{1}-1)!\times \cdots \times(D_{n-m}-1)!\times left!)}\]
\(3.n\)个点有标号有根树:\(n^{n-2}\times n=n^{n-1}\)
\(4.n\)个点无标号有根树:坑——生成函数
\(5.n\)个点无标号无根树:坑——生成函数
Prufer序列与树的计数(坑)的更多相关文章
- bzoj1211: prufer序列 | [HNOI2004]树的计数
题目大意: 告诉你树上每个节点的度数,让你构建出这样一棵树,问能够构建出树的种树 这里注意数量为0的情况,就是 当 n=1时,节点度数>0 n>1时,所有节点度数相加-n!=n-2 可以通 ...
- prufer BZOJ1211: [HNOI2004]树的计数
以前做过几题..好久过去全忘了. 看来是要记一下... [prufer] n个点的无根树(点都是标号的,distinct)对应一个 长度n-2的数列 所以 n个点的无根树有n^(n-2)种 树 转 p ...
- 树的计数 Prufer序列+Cayley公式
先安利一发.让我秒懂.. 第一次讲这个是在寒假...然而当时秦神太巨了导致我这个蒟蒻自闭+颓废...早就忘了这个东西了... 结果今天老师留的题中有两道这种的:Luogu P4981 P4430 然后 ...
- 【JZOJ5068】【GDSOI2017第二轮模拟】树 动态规划+prufer序列
题面 有n个点,它们从1到n进行标号,第i个点的限制为度数不能超过A[i]. 现在对于每个s (1 <= s <= n),问从这n个点中选出一些点组成大小为s的有标号无根树的方案数. 10 ...
- $Prufer$序列
\(Prufer\)序列 \(Prufer\)序列与树的相互转换: 树->\(Prufer\)序列 找到一个编号最小的叶子结点,把这个点删掉并且把跟他连着的那个点的编号加入\(Prufer\)序 ...
- [LOJ#6044]. 「雅礼集训 2017 Day8」共[二分图、prufer序列]
题意 题目链接 分析 钦定 \(k\) 个点作为深度为奇数的点,有 \(\binom{n-1}{k-1}\) 种方案. 将树黑白染色,这张完全二分图的生成树的个数就是我们钦定 \(k\) 个点之后合法 ...
- 树的计数 + prufer序列与Cayley公式 学习笔记
首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.ne ...
- 树的计数 + prufer序列与Cayley公式(转载)
原文出处:https://www.cnblogs.com/dirge/p/5503289.html 树的计数 + prufer序列与Cayley公式 学习笔记(转载) 首先是 Martrix67 的博 ...
- 【BZOJ 1211】 1211: [HNOI2004]树的计数 (prufer序列、计数)
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2468 Solved: 868 Description 一 ...
随机推荐
- vue项目 调用百度地图 BMap is not defined
这次老板新接了一个四点半官网页面,使用vue来写.emm……我感觉整个人都不好了,两天半解决了20个静态页面.还好vue写页面简直飞快,遇到一个vue的新坑,使用百度地图. 研究了好一会,总是报错BM ...
- URL Scheme
[URL Scheme] 可以通过info.plist注册url types来实现程序自定义的协议,以供外部程序调起. NSURL *myURL = [NSURL URLWithString:@&qu ...
- Web挖掘
Web挖掘 Web挖掘的目标是从Web的超链接.网页内容和使用日志中探寻有用的信息.依据Web挖掘任务,可以划分为三种主要类型:Web结构挖掘.Web内容挖掘和Web使用挖掘.Web结构挖掘简单的说就 ...
- 洛谷P4556 [Vani有约会]雨天的尾巴(线段树合并)
题目背景 深绘里一直很讨厌雨天. 灼热的天气穿透了前半个夏天,后来一场大雨和随之而来的洪水,浇灭了一切. 虽然深绘里家乡的小村落对洪水有着顽固的抵抗力,但也倒了几座老房子,几棵老树被连根拔起,以及田地 ...
- uva 10169 - Urn-ball Probabilities !(概率)
题目链接:uva 10169 - Urn-ball Probabilities ! 题目大意:在一个箱子中,原本有1个红球,然后任意取出(有放回)一个球,然后再往里放一个白球(每次取都要放进一个白球) ...
- Android-HttpsURLConnectionHelp工具类
Java版(HttpURLConnection)Https请求工具类 public class HttpsURLConnectionHelp { /** * 加密协议 */ public static ...
- AndroidStudio-永远无法进入
由于出现了莫名其妙的,AndroidStudio已过时错误信息 就去删除了: C:\Users\Administrator\.android C:\Users\Administrator\.Andro ...
- Objective-C 学习笔记(一) 语言程序结构
Objective-C语言程序结构 “Hello World”简单示例 #import <Foundation/Foundation.h> //预处理命令,它告诉Objective-C语言 ...
- JQuery中checkbox选择器
今天我们讲的是如何选择HTML网页中CheckBox选择器 如下图,是几个checkbox <input type='checkbox'checked="checked"/& ...
- roadflow企业微信工作流程的配置与使用
1.在您的微信后台添加应用 应用地址: 待办事项 :http://demo.roadflow.net/RoadFlowCore/Mobile/WaitTask 已办事项:http://demo.roa ...