题意

题目链接

Sol

一点思路都没有,只会暴力,没想到标算是数位dp??Orz

首先答案可以分成两部分来统计

\[f_{i,j}=
\begin{aligned}
i\oplus j &\left( i\oplus j >k\right) \\
0 &\left( i\oplus j <=k\right)
\end{aligned}
\]

那么我们要求的就是

\[\sum_{i=0}^{n - 1} \sum_{j = 0}^{m - 1} f(i, j) - k * \sum_{i = 0}^{n - 1} \sum_{j = 0}^{m - 1} [f(i, j)]
\]

也就是说,我们要统计出满足条件的数的异或和以及满足条件的数的对数

考虑直接在二进制下数位dp,注意这里我们要记三维状态

\(f[len][0/1][0/1][0/1]\)表示此时到第\(len\)位,是否顶着\(n\)的上界,是否顶着\(m\)的上界,是否顶着\(k\)的下界

然后直接dp就可以了

// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define Pair pair<LL, LL>
#define MP make_pair
#define fi first
#define se second
#define LL long long
#define int long long
using namespace std;
const int MAXN = 233;
inline LL read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
LL N, M, K, mod, Lim, vis[MAXN][2][2][2];
Pair f[MAXN][2][2][2];
void add2(LL &x, LL y) {
if(x + y < 0) x = (x + y + mod);
else x = (x + y >= mod ? x + y - mod : x + y);
}
LL add(LL x, LL y) {
if(x + y < 0) return x + y + mod;
return x + y >= mod ? x + y - mod : x + y;
}
LL mul(LL x, LL y) {
return 1ll * x % mod * y % mod;
}
int Get(LL x) {
int len = 0; while(x) x >>= 1, len++; return len;
}
Pair dfs(int now, int f1, int f2, int f3) {
if(now > Lim) return MP(0, 1);
if(vis[now][f1][f2][f3]) return f[now][f1][f2][f3];
vis[now][f1][f2][f3] = 1;
Pair ans = MP(0, 0);
int L1 = (N >> Lim - now) & 1, L2 = (M >> Lim - now) & 1, L3 = (K >> Lim - now) & 1;
//cout << (f1 &&(!L1)) << endl;
for(int i = 0; i <= (f1 ? L1 : 1); i++) {
for(int j = 0; j <= (f2 ? L2 : 1); j++) {
if(f3 && ((i ^ j) < L3)) continue;
Pair nxt = dfs(now + 1, f1 && (i == L1), f2 && (j == L2), f3 && ((i ^ j) == L3));
add2(ans.se, nxt.se);
add2(ans.fi, add(nxt.fi, mul(nxt.se, mul((i ^ j), (1ll << Lim - now)))));
}
}
return f[now][f1][f2][f3] = ans;
}
int solve() {
memset(vis, 0, sizeof(vis));
memset(f, 0, sizeof(f));
Lim = 0;
N = read(); M = read(); K = read(); mod = read(); N--; M--;
Lim = max(Get(N), max(Get(K), Get(M)));
Pair ans = dfs(1, 1, 1, 1);
return add(ans.fi, -mul(K, ans.se));
}
signed main() {
for(int T = read(); T; T--, printf("%lld\n", solve()));
return 0;
}
/*
5000
504363800392059286 554192717354508770 21453916680846604 401134357
*/

BZOJ4513: [Sdoi2016]储能表(数位dp)的更多相关文章

  1. [bzoj4513][SDOI2016]储能表——数位dp

    题目大意 求 \[\sum_{i = 0}^{n-1}\sum_{j=0}^{m-1} max((i\ xor\ j)\ -\ k,\ 0)\ mod\ p\] 题解 首先,开始并没有看出来这是数位d ...

  2. 【BZOJ4513】[Sdoi2016]储能表 数位DP

    [BZOJ4513][Sdoi2016]储能表 Description 有一个 n 行 m 列的表格,行从 0 到 n−1 编号,列从 0 到 m−1 编号.每个格子都储存着能量.最初,第 i 行第 ...

  3. BZOJ 4513: [Sdoi2016]储能表 [数位DP !]

    4513: [Sdoi2016]储能表 题意:求\[ \sum_{i=0}^{n-1}\sum_{j=0}^{m-1} max((i\oplus j)-k,0) \] 写出来好开心啊...虽然思路不完 ...

  4. BZOJ.4513.[SDOI2016]储能表(数位DP)

    BZOJ 洛谷 切了一道简单的数位DP,终于有些没白做题的感觉了...(然而mjt更强没做过这类的题也切了orz) 看部分分,如果\(k=0\),就是求\(\sum_{i=0}^n\sum_{j=0} ...

  5. [SDOI2016]储能表——数位DP

    挺隐蔽的数位DP.少见 其实减到0不减了挺难处理.....然后就懵了. 其实换个思路: xor小于k的哪些都没了, 只要留下(i^j)大于等于k的那些数的和以及个数, 和-个数*k就是答案 数位DP即 ...

  6. 4513: [Sdoi2016]储能表 数位DP

    国际惯例的题面: 听说这题的正解是找什么规律,数位DP是暴力......好的,我就写暴力了QAQ.我们令f[i][la][lb][lc]表示二进制从高到低考虑位数为i(最低位为1),是否顶n上界,是否 ...

  7. BZOJ4513 SDOI2016 储能表 记忆化搜索(动态规划)

    题意: 题面中文,不予翻译:SDOI2016储能表 分析: 据说有大爷用一些奇怪的方法切掉了这道题%%%%% 这里用的是大众方法——动态规划. 其实这是一道类似于二进制数位dp的动态规划题,(但是实际 ...

  8. BZOJ4513 SDOI2016储能表(数位dp)

    如果n.m.k都是2的幂次方,答案非常好统计.于是容易想到数位dp,考虑每一位是否卡限制即可,即设f[i][0/1][0/1][0/1]为第i位是/否卡n.m.k的限制时,之前的位的总贡献:g[i][ ...

  9. BZOJ4513: [Sdoi2016]储能表

    Description 有一个 n 行 m 列的表格,行从 0 到 n−1 编号,列从 0 到 m−1 编号.每个格子都储存着能量.最初,第 i 行第 j 列的格子储存着 (i xor j) 点能量. ...

随机推荐

  1. Laravel5.5 引入并使用第三方类库操作

    理论上,Laravel5系列都支持,各位可以一试.我这里使用5.5版本. 我这里引入了一个将汉字转化为拼音的类库测试,一起来看看吧! 首先,在laravel的app目录下自定义一个文件夹,我用的名字是 ...

  2. 题目1006:ZOJ问题(字符串处理)

    问题来源 http://ac.jobdu.com/problem.php?pid=1006 问题描述 输入一个只包含'z','o','j'三种字符的字符串,判断是否符合要求. 问题分析 分析AC的三个 ...

  3. Learn to See in the Dark(论文阅读笔记)

    最近做项目看了一篇论文<Learn to See in the Dark>下面是一些论文笔记 概括: 这篇论文主要介绍的是在低光照的环境下用两个标准的FCN网络,通过控制变量法来对比不同的 ...

  4. javaweb Servlet接收Android请求,并返回json数据

    1.实现功能 (1)接收http请求 (2)获取Android客户端发送的参数对应的内容 (3)hibernate查询数据库 (4)返回json数据 2.java代码 import EntityCla ...

  5. 用 diff 比较两个 hdfs 文件内容

    diff <(hadoop fs -cat /path/to/file) <(hadoop fs -cat /path/to/file2)

  6. 关于Java的权限修饰符(public,private,protected,默认friendly)

    以前对访问修饰符总是模棱两可,让自己仔细解释也是经常说不很清楚.这次要彻底的搞清楚. 现在总结如下: 一.概括总结 各个访问修饰符对不同包及其子类,非子类的访问权限 Java访问权限修饰符包含四个:p ...

  7. Java网络编程(二)关于Socket的一些个人想法

    1.Socket之间是如何通信的? 1.1 通信是要两两之间进行的所以应该有至少一个客户端(Client)和一个服务器端(Server),一般来说都是多个c端对一个s端---c\s 1.2 在客户端: ...

  8. 解决问题的思维方式之Problem->Desgin->Solution(笔记)

    Problem->Desgin->Solution: 1.对于每个需要实现的功能问题,我们都称之为Problem(问题). 2.解决问题的具体思考过程,寻求解决问题的方案,即为Desgin ...

  9. Elastic Kibana - Install as windows service

    #1 通过windows sc 服务命令安装 sc create "Kibana661" binPath= "{path}\kibana.bat" depend ...

  10. [转]在windows service中使用timer

    本文转自:http://blog.csdn.net/sharpnessdotnet/article/details/7637180 一定要使用System.Timers.Timer timer 而不是 ...