LA 4064 Magnetic Train Tracks
题意:给定平面上$n(3\leq n \leq 1200)$个无三点共线的点,问这些点组成了多少个锐角三角形。
分析:显然任意三点可构成三角形,而锐角三角形不如直角或钝角三角形容易计数,因为后者有且仅有一个角度大于等于$90^{\circ}$的特征角。
于是考虑固定平面上每一个顶点,也就是固定了钝角或直角三角形的一个特征顶点,将其余所有点按照极角排序,然后固定一条侧边,统计有多少条
边和该侧边夹角不小于$90^{\circ}$。这些边必然是连续的,可以使用区间统计的办法,用二分查找在$O(log(n))$时间内做到。
因此总的复杂度是$O(n^2log(n))$。
实际上如果用浮点数储存极角,然而用度数差判断会产生误差,下面的代码是采用分数来比较。
利用向量积的符号来决定侧边的分布范围,需要讨论某些值得符号。
代码:
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <string>
#include <queue>
#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <iostream>
#include <assert.h>
#define PI acos(-1.)
#pragma comment(linker, "/STACK:102400000,102400000")
#define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b))
#define mp make_pair
#define st first
#define nd second
#define keyn (root->ch[1]->ch[0])
#define lson (u << 1)
#define rson (u << 1 | 1)
#define pii pair<int, int>
#define pll pair<ll, ll>
#define pb push_back
#define type(x) __typeof(x.begin())
#define foreach(i, j) for(type(j)i = j.begin(); i != j.end(); i++)
#define FOR(i, s, t) for(int i = (s); i <= (t); i++)
#define ROF(i, t, s) for(int i = (t); i >= (s); i--)
#define dbg(x) cout << x << endl
#define dbg2(x, y) cout << x << " " << y << endl
#define clr(x, i) memset(x, (i), sizeof(x))
#define maximize(x, y) x = max((x), (y))
#define minimize(x, y) x = min((x), (y))
using namespace std;
typedef long long ll;
const int int_inf = 0x3f3f3f3f;
const ll ll_inf = 0x3f3f3f3f3f3f3f3f;
const int INT_INF = (int)((1ll << ) - );
const double double_inf = 1e30;
const double eps = 1e-;
typedef unsigned long long ul;
inline int readint(){
int x;
scanf("%d", &x);
return x;
}
inline int readstr(char *s){
scanf("%s", s);
return strlen(s);
}
//Here goes 2d geometry templates
struct Point{
double x, y;
Point(double x = , double y = ) : x(x), y(y) {}
};
typedef Point Vector;
Vector operator + (Vector A, Vector B){
return Vector(A.x + B.x, A.y + B.y);
}
Vector operator - (Point A, Point B){
return Vector(A.x - B.x, A.y - B.y);
}
Vector operator * (Vector A, double p){
return Vector(A.x * p, A.y * p);
}
Vector operator / (Vector A, double p){
return Vector(A.x / p, A.y / p);
}
bool operator < (const Point& a, const Point& b){
return a.x < b.x || (a.x == b.x && a.y < b.y);
}
int dcmp(double x){
if(abs(x) < eps) return ;
return x < ? - : ;
}
bool operator == (const Point& a, const Point& b){
return dcmp(a.x - b.x) == && dcmp(a.y - b.y) == ;
}
double Dot(Vector A, Vector B){
return A.x * B.x + A.y * B.y;
}
double Len(Vector A){
return sqrt(Dot(A, A));
}
double Angle(Vector A, Vector B){
return acos(Dot(A, B) / Len(A) / Len(B));
}
double Cross(Vector A, Vector B){
return A.x * B.y - A.y * B.x;
}
double Area2(Point A, Point B, Point C){
return Cross(B - A, C - A);
}
Vector Rotate(Vector A, double rad){
//rotate counterclockwise
return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad));
}
Vector Normal(Vector A){
double L = Len(A);
return Vector(-A.y / L, A.x / L);
}
void Normallize(Vector &A){
double L = Len(A);
A.x /= L, A.y /= L;
}
Point GetLineIntersection(Point P, Vector v, Point Q, Vector w){
Vector u = P - Q;
double t = Cross(w, u) / Cross(v, w);
return P + v * t;
}
double DistanceToLine(Point P, Point A, Point B){
Vector v1 = B - A, v2 = P - A;
return abs(Cross(v1, v2)) / Len(v1);
}
double DistanceToSegment(Point P, Point A, Point B){
if(A == B) return Len(P - A);
Vector v1 = B - A, v2 = P - A, v3 = P - B;
if(dcmp(Dot(v1, v2)) < ) return Len(v2);
else if(dcmp(Dot(v1, v3)) > ) return Len(v3);
else return abs(Cross(v1, v2)) / Len(v1);
}
Point GetLineProjection(Point P, Point A, Point B){
Vector v = B - A;
return A + v * (Dot(v, P - A) / Dot(v, v));
}
bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2){
//Line1:(a1, a2) Line2:(b1,b2)
double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),
c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
return dcmp(c1) * dcmp(c2) < && dcmp(c3) * dcmp(c4) < ;
}
bool OnSegment(Point p, Point a1, Point a2){
return dcmp(Cross(a1 - p, a2 - p)) == && dcmp(Dot(a1 - p, a2 -p)) < ;
}
Vector GetBisector(Vector v, Vector w){
Normallize(v), Normallize(w);
return Vector((v.x + w.x) / , (v.y + w.y) / );
} bool OnLine(Point p, Point a1, Point a2){
Vector v1 = p - a1, v2 = a2 - a1;
double tem = Cross(v1, v2);
return dcmp(tem) == ;
}
struct Line{
Point p;
Vector v;
Point point(double t){
return Point(p.x + t * v.x, p.y + t * v.y);
}
Line(Point p, Vector v) : p(p), v(v) {}
};
struct Circle{
Point c;
double r;
Circle(Point c, double r) : c(c), r(r) {}
Circle(int x, int y, int _r){
c = Point(x, y);
r = _r;
}
Point point(double a){
return Point(c.x + cos(a) * r, c.y + sin(a) * r);
}
};
int GetLineCircleIntersection(Line L, Circle C, double &t1, double& t2, vector<Point>& sol){
double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y;
double e = a * a + c * c, f = * (a * b + c * d), g = b * b + d * d - C.r * C.r;
double delta = f * f - * e * g;
if(dcmp(delta) < ) return ;
if(dcmp(delta) == ){
t1 = t2 = -f / ( * e); sol.pb(L.point(t1));
return ;
}
t1 = (-f - sqrt(delta)) / ( * e); sol.pb(L.point(t1));
t2 = (-f + sqrt(delta)) / ( * e); sol.pb(L.point(t2));
return ;
}
double angle(Vector v){
return atan2(v.y, v.x);
//(-pi, pi]
}
int GetCircleCircleIntersection(Circle C1, Circle C2, vector<Point>& sol){
double d = Len(C1.c - C2.c);
if(dcmp(d) == ){
if(dcmp(C1.r - C2.r) == ) return -; //two circle duplicates
return ; //two circles share identical center
}
if(dcmp(C1.r + C2.r - d) < ) return ; //too close
if(dcmp(abs(C1.r - C2.r) - d) > ) return ; //too far away
double a = angle(C2.c - C1.c); // angle of vector(C1, C2)
double da = acos((C1.r * C1.r + d * d - C2.r * C2.r) / ( * C1.r * d));
Point p1 = C1.point(a - da), p2 = C1.point(a + da);
sol.pb(p1);
if(p1 == p2) return ;
sol.pb(p2);
return ;
}
int GetPointCircleTangents(Point p, Circle C, Vector* v){
Vector u = C.c - p;
double dist = Len(u);
if(dist < C.r) return ;//p is inside the circle, no tangents
else if(dcmp(dist - C.r) == ){
// p is on the circles, one tangent only
v[] = Rotate(u, PI / );
return ;
}else{
double ang = asin(C.r / dist);
v[] = Rotate(u, -ang);
v[] = Rotate(u, +ang);
return ;
}
}
int GetCircleCircleTangents(Circle A, Circle B, Point* a, Point* b){
//a[i] store point of tangency on Circle A of tangent i
//b[i] store point of tangency on Circle B of tangent i
//six conditions is in consideration
int cnt = ;
if(A.r < B.r) { swap(A, B); swap(a, b); }
int d2 = (A.c.x - B.c.x) * (A.c.x - B.c.x) + (A.c.y - B.c.y) * (A.c.y - B.c.y);
int rdiff = A.r - B.r;
int rsum = A.r + B.r;
if(d2 < rdiff * rdiff) return ; // one circle is inside the other
double base = atan2(B.c.y - A.c.y, B.c.x - A.c.x);
if(d2 == && A.r == B.r) return -; // two circle duplicates
if(d2 == rdiff * rdiff){ // internal tangency
a[cnt] = A.point(base); b[cnt] = B.point(base); cnt++;
return ;
}
double ang = acos((A.r - B.r) / sqrt(d2));
a[cnt] = A.point(base + ang); b[cnt++] = B.point(base + ang);
a[cnt] = A.point(base - ang); b[cnt++] = B.point(base - ang);
if(d2 == rsum * rsum){
//one internal tangent
a[cnt] = A.point(base);
b[cnt++] = B.point(base + PI);
}else if(d2 > rsum * rsum){
//two internal tangents
double ang = acos((A.r + B.r) / sqrt(d2));
a[cnt] = A.point(base + ang); b[cnt++] = B.point(base + ang + PI);
a[cnt] = A.point(base - ang); b[cnt++] = B.point(base - ang + PI);
}
return cnt;
}
Point ReadPoint(){
double x, y;
scanf("%lf%lf", &x, &y);
return Point(x, y);
}
Circle ReadCircle(){
double x, y, r;
scanf("%lf%lf%lf", &x, &y, &r);
return Circle(x, y, r);
}
//Here goes 3d geometry templates
struct Point3{
double x, y, z;
Point3(double x = , double y = , double z = ) : x(x), y(y), z(z) {}
};
typedef Point3 Vector3;
Vector3 operator + (Vector3 A, Vector3 B){
return Vector3(A.x + B.x, A.y + B.y, A.z + B.z);
}
Vector3 operator - (Vector3 A, Vector3 B){
return Vector3(A.x - B.x, A.y - B.y, A.z - B.z);
}
Vector3 operator * (Vector3 A, double p){
return Vector3(A.x * p, A.y * p, A.z * p);
}
Vector3 operator / (Vector3 A, double p){
return Vector3(A.x / p, A.y / p, A.z / p);
}
double Dot3(Vector3 A, Vector3 B){
return A.x * B.x + A.y * B.y + A.z * B.z;
}
double Len3(Vector3 A){
return sqrt(Dot3(A, A));
}
double Angle3(Vector3 A, Vector3 B){
return acos(Dot3(A, B) / Len3(A) / Len3(B));
}
double DistanceToPlane(const Point3& p, const Point3 &p0, const Vector3& n){
return abs(Dot3(p - p0, n));
}
Point3 GetPlaneProjection(const Point3 &p, const Point3 &p0, const Vector3 &n){
return p - n * Dot3(p - p0, n);
}
Point3 GetLinePlaneIntersection(Point3 p1, Point3 p2, Point3 p0, Vector3 n){
Vector3 v = p2 - p1;
double t = (Dot3(n, p0 - p1) / Dot3(n, p2 - p1));
return p1 + v * t;//if t in range [0, 1], intersection on segment
}
Vector3 Cross(Vector3 A, Vector3 B){
return Vector3(A.y * B.z - A.z * B.y, A.z * B.x - A.x * B.z, A.x * B.y - A.y * B.x);
}
double Area3(Point3 A, Point3 B, Point3 C){
return Len3(Cross(B - A, C - A));
}
class cmpt{
public:
bool operator () (const int &x, const int &y) const{
return x > y;
}
}; int Rand(int x, int o){
//if o set, return [1, x], else return [0, x - 1]
if(!x) return ;
int tem = (int)((double)rand() / RAND_MAX * x) % x;
return o ? tem + : tem;
}
////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////
void data_gen(){
srand(time());
freopen("in.txt", "w", stdout);
int times = ;
printf("%d\n", times);
while(times--){
int r = Rand(, ), a = Rand(, ), c = Rand(, );
int b = Rand(r, ), d = Rand(r, );
int m = Rand(, ), n = Rand(m, );
printf("%d %d %d %d %d %d %d\n", n, m, a, b, c, d, r);
}
} struct cmpx{
bool operator () (int x, int y) { return x > y; }
};
int debug = ;
int dx[] = {, , , };
int dy[] = {, , , };
//-------------------------------------------------------------------------
const int maxn = 2e3 + ;
pll a[maxn];
pll b1[maxn], b2[maxn];
pll b[maxn];
int k1, k2, k;
int n;
ll ans;
bool cmp(const pll &lhs, const pll &rhs){
return lhs.st * rhs.nd < rhs.st * lhs.nd;
}
void solve(){
ans = ;
FOR(i, , n){
ll yb_leq_0 = , yb_geq_0 = , yb_eqt_0 = ;
ll yb_eqt_0_xb_geq_0 = , yb_eqt_0_xb_leq_0 = ;
k1 = k2 = k = ;
FOR(j, , n){
if(j == i) continue;
ll lhs = a[j].st - a[i].st, rhs = a[j].nd - a[i].nd;
yb_leq_0 += rhs <= , yb_geq_0 += rhs >= , yb_eqt_0 += rhs == ;
if(rhs < ) b1[k1++] = mp(lhs, rhs);
else if(rhs > ) b2[k2++] = mp(lhs, rhs);
else if(lhs >= ) ++yb_eqt_0_xb_geq_0;
else if(lhs <= ) ++yb_eqt_0_xb_leq_0;
b[k++] = mp(lhs, rhs);
}
FOR(j, , k1 - ) b1[j].st = -b1[j].st, b1[j].nd = -b1[j].nd;
sort(b1, b1 + k1, cmp), sort(b2, b2 + k2, cmp);
ll cnt = ;
FOR(j, , k - ){
ll xa = b[j].st, ya = b[j].nd;
if(!xa){
if(ya < ) cnt += yb_geq_0;
else if(ya > ) cnt += yb_leq_0;
else if(!ya) cnt += yb_geq_0 + yb_leq_0 + yb_eqt_0;
continue;
}else{
if(xa < ) cnt += yb_eqt_0_xb_geq_0;
else if(xa > ) cnt += yb_eqt_0_xb_leq_0;
pll tem = mp(-ya, xa);
if(xa < ) tem.st = -tem.st, tem.nd = -tem.nd;
if(xa < ){
int l = lower_bound(b2, b2 + k2, tem, cmp) - b2;
cnt += k2 - l;
int r = upper_bound(b1, b1 + k1, tem, cmp) - b1;
cnt += r;
}else if(xa > ){
int l = lower_bound(b1, b1 + k1, tem, cmp) - b1;
cnt += k1 - l;
int r = upper_bound(b2, b2 + k2, tem, cmp) - b2;
cnt += r;
}
}
}
ans += cnt >> ;
//printf("at %lld %lld count %lld\n", a[i].st, a[i].nd, cnt);
}
ans = (ll)n * (n - ) * (n - ) / - ans;
} //-------------------------------------------------------------------------
int main(){
//data_gen(); return 0;
//C(); return 0;
debug = ;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
if(debug) freopen("in.txt", "r", stdin);
//freopen("in.txt", "w", stdout);
int kase = ;
while(~scanf("%d", &n) && n){
FOR(i, , n) scanf("%lld%lld", &a[i].st, &a[i].nd);
solve();
printf("Scenario %d:\nThere are %lld sites for making valid tracks\n", ++kase, ans);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
return ;
}
code:
LA 4064 Magnetic Train Tracks的更多相关文章
- UVaLive 4064 Magnetic Train Tracks (极角排序)
题意:给定 n 个不三点共线的点,然后问你能组成多少锐角或者直角三角形. 析:可以反过来求,求有多少个钝角三角形,然后再用总的减去,直接求肯定会超时,但是可以枚举每个点,以该点为钝角的那个顶点,然后再 ...
- LA 4064 (计数 极角排序) Magnetic Train Tracks
这个题和UVa11529很相似. 枚举一个中心点,然后按极角排序,统计以这个点为钝角的三角形的个数,然后用C(n, 3)减去就是答案. 另外遇到直角三角形的情况很是蛋疼,可以用一个eps,不嫌麻烦的话 ...
- 11586 - Train Tracks
Problem J: Train Tracks Andy loves his set of wooden trains and railroad tracks. Each day, Daddy has ...
- UVa 11586 - Train Tracks
题目:给你一些积木碎片,每一个碎片的两端仅仅能是凸或凹(M或F).凸凹可拼起来.是否能拼成一个环. 分析:图论.欧拉回路.推断入度等于出度就可以,即M和F同样且大于1组. 说明:╮(╯▽╰)╭. #i ...
- ACM计算几何题目推荐
//第一期 计算几何题的特点与做题要领: 1.大部分不会很难,少部分题目思路很巧妙 2.做计算几何题目,模板很重要,模板必须高度可靠. 3.要注意代码的组织,因为计算几何的题目很容易上两百行代码,里面 ...
- Zerojudge解题经验交流
题号:a001: 哈囉 背景知识:输出语句,while not eof 题号:a002: 簡易加法 背景知识:输出语句,while not eof,加法运算 题号:a003: 兩光法師占卜術 背景知识 ...
- jQuery中的supersized的插件的功能描述
Supersized特性: 自动等比例调整图片并填充整浏览器个屏幕. 循环展示图片,支持滑动和淡入淡出等多种图片切换效果. 导航按钮,支持键盘方向键导航. XHTML <div id=" ...
- CSU训练分类
√√第一部分 基础算法(#10023 除外) 第 1 章 贪心算法 √√#10000 「一本通 1.1 例 1」活动安排 √√#10001 「一本通 1.1 例 2」种树 √√#10002 「一本通 ...
- 清华学堂 列车调度(Train)
列车调度(Train) Description Figure 1 shows the structure of a station for train dispatching. Figure 1 In ...
随机推荐
- Silverlight动画显示Line线
目的:在silverlight中显示两点之间的连线,要求动画显示连线效果. 如果需实现动画效果不得不了解,Storyborad对象: Storyboard Silverlight 通过时间线控制动 ...
- C++Primer 第六章
//1.我们通过调用运算符来执行函数.调用运算符的形式是一对圆括号,他作用于一个表达式,该表达式是一个函数或者指向函数的指针.圆括号之内是用逗号分隔的实参列表,用于初始化函数形参.调用表达式的类型就是 ...
- 锋利的jQuery
今天总要找点东西学习,其实有很多东西要记录,慢慢写,今天看书吧,这几天把这本书看完,这里记一些要点 从头开始记吧 第一章 认识jQuery $就是jQuery的简写 $(function(){}) 就 ...
- Leetcode: Evaluate Division
Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...
- [原创]java WEB学习笔记78:Hibernate学习之路---session概述,session缓存(hibernate 一级缓存),数据库的隔离级别,在 MySql 中设置隔离级别,在 Hibernate 中设置隔离级别
本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱 ...
- C++之路进阶——优先队列优化最短路径算法(dijkstra)
一般的dijkstra算法利用贪心的思想,每次找出最短边,然后优化到其他点的的距离,我们还采用贪心思路,但在寻找最短边进行优化,之前是双重for循环,现在我们用优先队列来实现. 代码解释: //样例程 ...
- 关于VOID *在cl与gcc的不同(无意中发现)
在windows中,void *是不确定类型,CL编译器无法确定其步长 但在linux中,void *默认步长是1
- struts复合类型传值(对象传值)
01:导包,配置web.xml <?xml version="1.0" encoding="UTF-8"?> <web-app version ...
- C#与js的各种交互
今天遇到一个问题,查到不错的资料,放上来记录一下,以防忘记地址,算是我的笔记吧! 很多人都向在服务器端调用客户端的函数来操作,也就是在asp中调用javascript脚本中已经定义好的脚本函数.经过研 ...
- Silverlight ModelView中调用UI进程
Silverlihgt: Deployment.Current.Dispatcher.BeginInvoke wpf: App.Current.Dispatcher.Invoke