背景介绍

图像拼接是一项应用广泛的图像处理技术。根据特征点的相互匹配,可以将多张小视角的图像拼接成为一张大视角的图像,在广角照片合成、卫星照片处理、医学图像处理等领域都有应用。早期的图像拼接主要是运用像素值匹配的方法。后来,人们分别在两幅图像中寻找拐点、边缘等稳定的特征,用特征匹配的方法拼接图像。本实验根据Matthew Brown (2005) 描述的方法,实现多张生活照的拼接。

特征点捕捉 (Interest Point Detection)

首先,拍摄两张场景有重合的照片。为了保证有足够多的公共特征点,照片的重合度应该保证在30%以上。将两张照片转换为灰度图像,对图像做σ=1的高斯模糊。在Matthew的文章中,他建立了一个图像金字塔,在不同尺度寻找Harris关键点。考虑到将要拼接的照片视野尺寸接近,故简化此步骤,仅在原图提取特征点。

接下来用sobel算子计算图像在x、y两个方向亮度的梯度,用σ=1.5的高斯函数对梯度做平滑处理,减小噪点对亮度的影响。很容易发现,若我们求一小块区域内亮度的累加值,在图像变化平缓的区域上下左右移动窗口累加值的变化并不明显;在物体的边缘,沿着边缘方向的变化也不明显;而在关键点附近,轻微的移动窗口都会强烈改变亮度的累加值,如图1所示。

图1 http://www.cse.psu.edu/~rcollins/CSE486/lecture06.pdf

亮度的变化值可以用下面的公式计算得到:

   (1)

其中,w(x, y) 是高斯函数的权重,I(x, y)是该点亮度的梯度。

在计算时,上面的公式又可以近似为如下:

(2)

通过比较矩阵的特征值l1和l2,我们可以判断该点所处的状态。若l1>>l2或者l2<<l1,表示该点位于纵向或者横向的边缘;若l1和l2近似且值很小,表示该点位于平滑区域;若l1和l2近似但值很大,表示该点位于关键点。根据Harris and Stephens (1988) 的介绍,我们并不需要直接计算两个特征值,用R = Det(H)/Tr(H)2的值就可以反映两个特征值的比值,这样可以减少运算量。我们保留R > 2的点。除此之外,每个点的R和周围8邻域像素的R值比较,仅保留局部R值最大的点。最后,去除图片边界附近的关键点。

至此,我们在两幅图片分别得到了一组关键点,如图2所示。

图2 Harris Corner

自适应非极大值抑制 (Adaptive Non-Maximal Suppression)

由于上一步得到的关键点很多,直接计算会导致很大的运算量,也会增加误差。接下去就要去除其中绝大部分的关键点,仅保留一些特征明显点,且让关键点在整幅图像内分布均匀。Matthew发明了adaptive non-maximal suppression (ANMS) 方法来择优选取特定数量的关键点。

ANMS的思想是有一个半径r,初始值为无限远。当r不断减小时,保留在半径r以内其它关键点R值均小于中心点R值的关键点,将其加入队列。队列内的关键点数达到预设值后停止搜索。

Xi是上一步得到的关键点的2维坐标,G是所有关键点的集合,c=0.9。

实际计算时,我们将上述过程相反。这里我设定每幅图像各提取500个关键点。首先找出整幅图片R值最大的关键点Rmax,加入队列,并且得到Rmax*0.9的值。遍历所有关键点,若该关键点xi的Ri> Rmax*0.9, 该点的半径设为无限远;若该关键点xi的Ri< Rmax*0.9,计算该点到离它最近的Rj>0.9R的点xi,记录两点间的距离ri。最后将所有r排序,找出r最大的500个点,如图3所示。

图3 Harris corner after ANMS

关键点的描述 (Feature Descriptor)

关键点的描述方法有很多种,包括局部梯度描述、尺度不变特征变换 (SIFT、SUFT) 等等。因为生活照的旋转角度通常不超过15°,所以这里不考虑关键点的旋转不变性。

对图像做适度的高斯模糊,以关键点为中心,取40x40像素的区域。将该区域降采样至8x8的大小,生成一个64维的向量。对向量做归一化处理。每个关键点都用一个64维的向量表示,于是每幅图像分别得到了一个500x64的特征矩阵。

关键点的匹配

首先,从两幅图片的500个特征点中筛选出配对的点。筛选的方法是先计算500个特征点两两之间的欧氏距离,按照距离由小到大排序。通常情况下选择距离最小的一对特征向量配对。Lowe(2004)认为,仅仅观察最小距离并不能有效筛选配对特征点,而用最小的距离和第二小的距离的比值可以很好的进行筛选。如图4所示, 使用距离的比值能够获得更高的true positive, 同时控制较低的false positive。我使用的阈值是r1/r2<0.5。经过筛选后的配对特征点 如图5所示

图 4. 配对正确率和配对方法、阈值选择的关系

图 5. 筛选后的配对特征点

关键点的匹配使用Random Sample Consensus (RANSAC) 算法。以一幅图像为基准,每次从中随机选择8个点,在另一幅图像中找出配对的8个点。用8对点计算得到一个homography,将基准图中剩余的特征点按照homography变换投影到另一幅图像,统计配对点的个数。

重复上述步骤2000次,得到准确配对最多的一个homography。至此,两幅图像的投影变换关系已经找到。

新图像的合成

在做图像投影前,要先新建一个空白画布。比较投影后两幅图像的2维坐标的上下左右边界,选取各个方向边界的最大值作为新图像的尺寸。同时,计算得到两幅图像的交叉区域。

在两幅图像的交叉区域,按照cross dissolve的方法制作两块如图6所示的蒙版,3个通道的像素值再次区间内递减(递升)。

效果展示

下面展示几张照片拼接的效果图。

图 7. 拼接完成的新图像

图 8. 以左边照片为基准拼接

附Matlab代码:

function [output_image] = image_stitching(input_A, input_B)
% -------------------------------------------------------------------------
% 1. Load both images, convert to double and to grayscale.
% 2. Detect feature points in both images.
% 3. Extract fixed-size patches around every keypoint in both images, and
% form descriptors simply by "flattening" the pixel values in each patch to
% one-dimensional vectors.
% 4. Compute distances between every descriptor in one image and every descriptor in the other image.
% 5. Select putative matches based on the matrix of pairwise descriptor
% distances obtained above.
% 6. Run RANSAC to estimate (1) an affine transformation and (2) a
% homography mapping one image onto the other.
% 7. Warp one image onto the other using the estimated transformation.
% 8. Create a new image big enough to hold the panorama and composite the
% two images into it.
%
% Input:
% input_A - filename of warped image
% input_B - filename of unwarped image
% Output:
% output_image - combined new image
%
% Reference:
% [1] C.G. Harris and M.J. Stephens, A combined corner and edge detector, 1988.
% [2] Matthew Brown, Multi-Image Matching using Multi-Scale Oriented Patches.
%
% zhyh8341@gmail.com

% -------------------------------------------------------------------------

% READ IMAGE, GET SIZE INFORMATION
image_A = imread(input_A);
image_B = imread(input_B);
[height_wrap, width_wrap,~] = size(image_A);
[height_unwrap, width_unwrap,~] = size(image_B);

% CONVERT TO GRAY SCALE
gray_A = im2double(rgb2gray(image_A));
gray_B = im2double(rgb2gray(image_B));

% FIND HARRIS CORNERS IN BOTH IMAGE
[x_A, y_A, v_A] = harris(gray_A, 2, 0.0, 2);
[x_B, y_B, v_B] = harris(gray_B, 2, 0.0, 2);

% ADAPTIVE NON-MAXIMAL SUPPRESSION (ANMS)
ncorners = 500;
[x_A, y_A, ~] = ada_nonmax_suppression(x_A, y_A, v_A, ncorners);
[x_B, y_B, ~] = ada_nonmax_suppression(x_B, y_B, v_B, ncorners);

% EXTRACT FEATURE DESCRIPTORS
sigma = 7;
[des_A] = getFeatureDescriptor(gray_A, x_A, y_A, sigma);
[des_B] = getFeatureDescriptor(gray_B, x_B, y_B, sigma);

% IMPLEMENT FEATURE MATCHING
dist = dist2(des_A,des_B);
[ord_dist, index] = sort(dist, 2);
% THE RATIO OF FIRST AND SECOND DISTANCE IS A BETTER CRETIA THAN DIRECTLY
% USING THE DISTANCE. RATIO LESS THAN .5 GIVES AN ACCEPTABLE ERROR RATE.
ratio = ord_dist(:,1)./ord_dist(:,2);
threshold = 0.5;
idx = ratio<threshold;

x_A = x_A(idx);
y_A = y_A(idx);
x_B = x_B(index(idx,1));
y_B = y_B(index(idx,1));
npoints = length(x_A);

% USE 4-POINT RANSAC TO COMPUTE A ROBUST HOMOGRAPHY ESTIMATE
% KEEP THE FIRST IMAGE UNWARPED, WARP THE SECOND TO THE FIRST
matcher_A = [y_A, x_A, ones(npoints,1)]'; %!!! previous x is y and y is x,
matcher_B = [y_B, x_B, ones(npoints,1)]'; %!!! so switch x and y here.
[hh, ~] = ransacfithomography(matcher_B, matcher_A, npoints, 10);

% s = load('matcher.mat');
% matcher_A = s.matcher(1:3,:);
% matcher_B = s.matcher(4:6,:);
% npoints = 60;
% [hh, inliers] = ransacfithomography(matcher_B, matcher_A, npoints, 10);

% USE INVERSE WARP METHOD
% DETERMINE THE SIZE OF THE WHOLE IMAGE
[newH, newW, newX, newY, xB, yB] = getNewSize(hh, height_wrap, width_wrap, height_unwrap, width_unwrap);

[X,Y] = meshgrid(1:width_wrap,1:height_wrap);
[XX,YY] = meshgrid(newX:newX+newW-1, newY:newY+newH-1);
AA = ones(3,newH*newW);
AA(1,:) = reshape(XX,1,newH*newW);
AA(2,:) = reshape(YY,1,newH*newW);

AA = hh*AA;
XX = reshape(AA(1,:)./AA(3,:), newH, newW);
YY = reshape(AA(2,:)./AA(3,:), newH, newW);

% INTERPOLATION, WARP IMAGE A INTO NEW IMAGE
newImage(:,:,1) = interp2(X, Y, double(image_A(:,:,1)), XX, YY);
newImage(:,:,2) = interp2(X, Y, double(image_A(:,:,2)), XX, YY);
newImage(:,:,3) = interp2(X, Y, double(image_A(:,:,3)), XX, YY);

% BLEND IMAGE BY CROSS DISSOLVE
[newImage] = blend(newImage, image_B, xB, yB);

% DISPLAY IMAGE MOSIAC
imshow(uint8(newImage));

% -------------------------------------------------------------------------
% ------------------------------- other functions -------------------------
% -------------------------------------------------------------------------
function [xp, yp, value] = harris(input_image, sigma,thd, r)
% Detect harris corner
% Input:
% sigma - standard deviation of smoothing Gaussian
% r - radius of region considered in non-maximal suppression
% Output:
% xp - x coordinates of harris corner points
% yp - y coordinates of harris corner points
% value - values of R at harris corner points

% CONVERT RGB IMAGE TO GRAY-SCALE, AND BLUR WITH G1 KERNEL
g1 = fspecial('gaussian', 7, 1);
gray_image = imfilter(input_image, g1);

% FILTER INPUT IMAGE WITH SOBEL KERNEL TO GET GRADIENT ON X AND Y
% ORIENTATION RESPECTIVELY
h = fspecial('sobel');
Ix = imfilter(gray_image,h,'replicate','same');
Iy = imfilter(gray_image,h','replicate','same');

% GENERATE GAUSSIAN FILTER OF SIZE 6*SIGMA (± 3SIGMA) AND OF MINIMUM SIZE 1x1
g = fspecial('gaussian',fix(6*sigma), sigma);

Ix2 = imfilter(Ix.^2, g, 'same').*(sigma^2);
Iy2 = imfilter(Iy.^2, g, 'same').*(sigma^2);
Ixy = imfilter(Ix.*Iy, g, 'same').*(sigma^2);

% HARRIS CORNER MEASURE
R = (Ix2.*Iy2 - Ixy.^2)./(Ix2 + Iy2 + eps);
% ANOTHER MEASUREMENT, USUALLY k IS BETWEEN 0.04 ~ 0.06
% response = (Ix2.*Iy2 - Ixy.^2) - k*(Ix2 + Iy2).^2;

% GET RID OF CORNERS WHICH IS CLOSE TO BORDER
R([1:20, end-20:end], :) = 0;
R(:,[1:20,end-20:end]) = 0;

% SUPRESS NON-MAX
d = 2*r+1;
localmax = ordfilt2(R,d^2,true(d));
R = R.*(and(R==localmax, R>thd));

% RETURN X AND Y COORDINATES
[xp,yp,value] = find(R);

function [newx, newy, newvalue] = ada_nonmax_suppression(xp, yp, value, n)
% Adaptive non-maximun suppression
% For each Harris Corner point, the minimum suppression radius is the
% minimum distance from that point to a different point with a higher
% corner strength.
% Input:
% xp,yp - coordinates of harris corner points
% value - strength of suppression
% n - number of interesting points
% Output:
% newx, newy - new x and y coordinates after adaptive non-maximun suppression
% value - strength of suppression after adaptive non-maximun suppression

% ALLOCATE MEMORY
% newx = zeros(n,1);
% newy = zeros(n,1);
% newvalue = zeros(n,1);

if(length(xp) < n)
newx = xp;
newy = yp;
newvalue = value;
return;
end

radius = zeros(n,1);
c = .9;
maxvalue = max(value)*c;
for i=1:length(xp)
if(value(i)>maxvalue)
radius(i) = 99999999;
continue;
else
dist = (xp-xp(i)).^2 + (yp-yp(i)).^2;
dist((value*c) < value(i)) = [];
radius(i) = sqrt(min(dist));
end
end

[~, index] = sort(radius,'descend');
index = index(1:n);

newx = xp(index);
newy = yp(index);
newvalue = value(index);

function n2 = dist2(x, c)
% DIST2 Calculates squared distance between two sets of points.
% Adapted from Netlab neural network software:
% http://www.ncrg.aston.ac.uk/netlab/index.php
%
% Description
% D = DIST2(X, C) takes two matrices of vectors and calculates the
% squared Euclidean distance between them. Both matrices must be of
% the same column dimension. If X has M rows and N columns, and C has
% L rows and N columns, then the result has M rows and L columns. The
% I, Jth entry is the squared distance from the Ith row of X to the
% Jth row of C.
%
%
% Copyright (c) Ian T Nabney (1996-2001)

[ndata, dimx] = size(x);
[ncentres, dimc] = size(c);
if dimx ~= dimc
error('Data dimension does not match dimension of centres')
end

n2 = (ones(ncentres, 1) * sum((x.^2)', 1))' + ...
ones(ndata, 1) * sum((c.^2)',1) - ...
2.*(x*(c'));

% Rounding errors occasionally cause negative entries in n2
if any(any(n2<0))
n2(n2<0) = 0;
end

function [descriptors] = getFeatureDescriptor(input_image, xp, yp, sigma)
% Extract non-rotation invariant feature descriptors
% Input:
% input_image - input gray-scale image
% xx - x coordinates of potential feature points
% yy - y coordinates of potential feature points
% output:
% descriptors - array of descriptors

% FIRST BLUR WITH GAUSSIAN KERNEL
g = fspecial('gaussian', 5, sigma);
blurred_image = imfilter(input_image, g, 'replicate','same');

% THEN TAKE A 40x40 PIXEL WINDOW AND DOWNSAMPLE TO 8x8 PATCH
npoints = length(xp);
descriptors = zeros(npoints,64);

for i = 1:npoints
%pA = imresize( blurred_image(xp(i)-20:xp(i)+19, yp(i)-20:yp(i)+19), .2);
patch = blurred_image(xp(i)-20:xp(i)+19, yp(i)-20:yp(i)+19);
patch = imresize(patch, .2);
descriptors(i,:) = reshape((patch - mean2(patch))./std2(patch), 1, 64);
end

function [hh] = getHomographyMatrix(point_ref, point_src, npoints)
% Use corresponding points in both images to recover the parameters of the transformation
% Input:
% x_ref, x_src --- x coordinates of point correspondences
% y_ref, y_src --- y coordinates of point correspondences
% Output:
% h --- matrix of transformation

% NUMBER OF POINT CORRESPONDENCES
x_ref = point_ref(1,:)';
y_ref = point_ref(2,:)';
x_src = point_src(1,:)';
y_src = point_src(2,:)';

% COEFFICIENTS ON THE RIGHT SIDE OF LINEAR EQUATIONS
A = zeros(npoints*2,8);
A(1:2:end,1:3) = [x_ref, y_ref, ones(npoints,1)];
A(2:2:end,4:6) = [x_ref, y_ref, ones(npoints,1)];
A(1:2:end,7:8) = [-x_ref.*x_src, -y_ref.*x_src];
A(2:2:end,7:8) = [-x_ref.*y_src, -y_ref.*y_src];

% COEFFICIENT ON THE LEFT SIDE OF LINEAR EQUATIONS
B = [x_src, y_src];
B = reshape(B',npoints*2,1);

% SOLVE LINEAR EQUATIONS
h = A\B;

hh = [h(1),h(2),h(3);h(4),h(5),h(6);h(7),h(8),1];

function [hh, inliers] = ransacfithomography(ref_P, dst_P, npoints, threshold);
% 4-point RANSAC fitting
% Input:
% matcher_A - match points from image A, a matrix of 3xN, the third row is 1
% matcher_B - match points from image B, a matrix of 3xN, the third row is 1
% thd - distance threshold
% npoints - number of samples
%
% 1. Randomly select minimal subset of points
% 2. Hypothesize a model
% 3. Computer error function
% 4. Select points consistent with model
% 5. Repeat hypothesize-and-verify loop
%
% Yihua Zhao 02-01-2014
% zhyh8341@gmail.com

ninlier = 0;
fpoints = 8; %number of fitting points
for i=1:2000
rd = randi([1 npoints],1,fpoints);
pR = ref_P(:,rd);
pD = dst_P(:,rd);
h = getHomographyMatrix(pR,pD,fpoints);
rref_P = h*ref_P;
rref_P(1,:) = rref_P(1,:)./rref_P(3,:);
rref_P(2,:) = rref_P(2,:)./rref_P(3,:);
error = (rref_P(1,:) - dst_P(1,:)).^2 + (rref_P(2,:) - dst_P(2,:)).^2;
n = nnz(error<threshold);
if(n >= npoints*.95)
hh=h;
inliers = find(error<threshold);
pause();
break;
elseif(n>ninlier)
ninlier = n;
hh=h;
inliers = find(error<threshold);
end
end

function [newH, newW, x1, y1, x2, y2] = getNewSize(transform, h2, w2, h1, w1)
% Calculate the size of new mosaic
% Input:
% transform - homography matrix
% h1 - height of the unwarped image
% w1 - width of the unwarped image
% h2 - height of the warped image
% w2 - height of the warped image
% Output:
% newH - height of the new image
% newW - width of the new image
% x1 - x coordate of lefttop corner of new image
% y1 - y coordate of lefttop corner of new image
% x2 - x coordate of lefttop corner of unwarped image
% y2 - y coordate of lefttop corner of unwarped image
%
% Yihua Zhao 02-02-2014
% zhyh8341@gmail.com
%

% CREATE MESH-GRID FOR THE WARPED IMAGE
[X,Y] = meshgrid(1:w2,1:h2);
AA = ones(3,h2*w2);
AA(1,:) = reshape(X,1,h2*w2);
AA(2,:) = reshape(Y,1,h2*w2);

% DETERMINE THE FOUR CORNER OF NEW IMAGE
newAA = transform\AA;
new_left = fix(min([1,min(newAA(1,:)./newAA(3,:))]));
new_right = fix(max([w1,max(newAA(1,:)./newAA(3,:))]));
new_top = fix(min([1,min(newAA(2,:)./newAA(3,:))]));
new_bottom = fix(max([h1,max(newAA(2,:)./newAA(3,:))]));

newH = new_bottom - new_top + 1;
newW = new_right - new_left + 1;
x1 = new_left;
y1 = new_top;
x2 = 2 - new_left;
y2 = 2 - new_top;

function [newImage] = blend(warped_image, unwarped_image, x, y)
% Blend two image by using cross dissolve
% Input:
% warped_image - original image
% unwarped_image - the other image
% x - x coordinate of the lefttop corner of unwarped image
% y - y coordinate of the lefttop corner of unwarped image
% Output:
% newImage
%
% Yihua Zhao 02-02-2014
% zhyh8341@gmail.com
%

% MAKE MASKS FOR BOTH IMAGES
warped_image(isnan(warped_image))=0;
maskA = (warped_image(:,:,1)>0 |warped_image(:,:,2)>0 | warped_image(:,:,3)>0);
newImage = zeros(size(warped_image));
newImage(y:y+size(unwarped_image,1)-1, x: x+size(unwarped_image,2)-1,:) = unwarped_image;
mask = (newImage(:,:,1)>0 | newImage(:,:,2)>0 | newImage(:,:,3)>0);
mask = and(maskA, mask);

% GET THE OVERLAID REGION
[~,col] = find(mask);
left = min(col);
right = max(col);
mask = ones(size(mask));
if( x<2)
mask(:,left:right) = repmat(linspace(0,1,right-left+1),size(mask,1),1);
else
mask(:,left:right) = repmat(linspace(1,0,right-left+1),size(mask,1),1);
end

% BLEND EACH CHANNEL
warped_image(:,:,1) = warped_image(:,:,1).*mask;
warped_image(:,:,2) = warped_image(:,:,2).*mask;
warped_image(:,:,3) = warped_image(:,:,3).*mask;

% REVERSE THE ALPHA VALUE
if( x<2)
mask(:,left:right) = repmat(linspace(1,0,right-left+1),size(mask,1),1);
else
mask(:,left:right) = repmat(linspace(0,1,right-left+1),size(mask,1),1);
end
newImage(:,:,1) = newImage(:,:,1).*mask;
newImage(:,:,2) = newImage(:,:,2).*mask;
newImage(:,:,3) = newImage(:,:,3).*mask;

newImage(:,:,1) = warped_image(:,:,1) + newImage(:,:,1);
newImage(:,:,2) = warped_image(:,:,2) + newImage(:,:,2);
newImage(:,:,3) = warped_image(:,:,3) + newImage(:,:,3);

若觉得以上文字和代码有帮助,请给我一些鼓励吧!

图像处理之image stitching的更多相关文章

  1. Atitit 图像处理和计算机视觉的分类 三部分 图像处理 图像分析 计算机视觉

    Atitit 图像处理和计算机视觉的分类 三部分 图像处理 图像分析 计算机视觉 1.1. 按照当前流行的分类方法,可以分为以下三部分:三部分 图像处理 图像分析 计算机视觉1 1.2. 图像处理需要 ...

  2. Atitit 图像处理的摩西五经attilax总结

    Atitit 图像处理的摩西五经attilax总结 1. 数字图像处理(第三版)1 2. 图像处理基础(第2版)(世界著名计算机教材精选)1 3. 计算机视觉特征提取与图像处理(第三版)2 4. Op ...

  3. Atitit 图像处理的心得与疑惑 attilax总结

    Atitit 图像处理的心得与疑惑 attilax总结 1.1. 使用类库好不好??还是自己实现算法1 1.2. 但是,如果遇到类库体积太大,后者没有合适的算法,那就只能自己开发算法了1 1.3. 如 ...

  4. Atitit 图像处理 调用opencv 通过java  api   attilax总结

    Atitit 图像处理 调用opencv 通过java  api   attilax总结 1.1. Opencv java api的支持 opencv2.4.2 就有了对java api的支持1 1. ...

  5. Atitit MATLAB 图像处理 经典书籍attilax总结

    Atitit MATLAB 图像处理 经典书籍attilax总结 1.1. MATLAB数字图像处理1 1.2. <MATLAB实用教程(第二版)>((美)穆尔 著)[简介_书评_在线阅读 ...

  6. Atitit 图像处理类库大总结attilax qc20

    Atitit 图像处理类库大总结attilax qc20 1.1. 选择与组合不同的图像处理类库1 1.2. Halcon 貌似商业工具,功能强大.1 1.3. Openvc  Openvc功能也是比 ...

  7. Atitit MATLAB 图像处理attilax总结

    Atitit MATLAB 图像处理attilax总结 1.1. 下载 Matlab7.0官方下载_Matlab2012 v7.0 官方简体中文版-办公软件-系统大全.html1 1.2. Matla ...

  8. 使用MATLAB对图像处理的几种方法(下)

     试验报告 一.试验原理: 图像点处理是图像处理系列的基础,主要用于让我们熟悉Matlab图像处理的编程环境.灰度线性变换和灰度拉伸是对像素灰度值的变换操作,直方图是对像素灰度值的统计,直方图均衡是对 ...

  9. 使用MATLAB对图像处理的几种方法(上)

    实验一图像的滤波处理 一.实验目的 使用MATLAB处理图像,掌握均值滤波器和加权均值滤波器的使用,对比两种滤波器对图像处理结果及系统自带函数和自定义函数性能的比较,体会不同大小的掩模对图像细节的影响 ...

随机推荐

  1. 转: html表单中get方式和post方式的区别

    1.Get是用来从服务器上获得数据,而Post是用来向服务器上传递数据.  2.Get将表单中数据的按照variable=value的形式,添加到action所指向的URL后面,并且两者使用“?”连接 ...

  2. UVa 11021 - Tribles

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  3. arm-linux-gcc-4.3.2安装步骤

        安装交叉编译工具链: 1.首先以root用户登入 2.复制arm-linux-gcc-4.3.2.tgz到根目录下tmp文件夹里 3.解压命令tar xvzf arm-linux-gcc-4. ...

  4. WDCP管理面板安装启动EXIF、bcmath完整步骤

    一般我们网站建设的需要,如果使用WDCP面板默认的功能就足够使用,如果需要特殊程序的特定组件支持,就需要独立的安装支持组件.比如一位朋友的程序需要支持EXIF.bcmath组件,这不老蒋寻找解决方法, ...

  5. C- printf的使用

    ASC C之后引入的一个特性是,相邻的字符可以被自动连接 /* printf.cc * 2014/09/02 update */ #include <iostream> using nam ...

  6. C# Process打开程序并移动窗口到指定位置

    process.start只是按指定的参数来运行一个程序,而这个程序自己运行起来是什么样子的就不是Process所能处理的了,不过当程序运行起来后倒是可以通过Process的MainWindowHan ...

  7. 避免ajax中get方法产生缓存的解决办法

    在参数中传一个随机数,就会避免浏览器对get方法异步修改数据缓存,导致不能及时看到最新效果 $.get("<?php echo U('Vip/VipHandouts/change_gr ...

  8. php的查询数据

    php中 连接数据库,通过表格形式输出,查询数据.全选时,下面的分选项都选中;子选项取消一个时,全选按钮也取消选中. <!DOCTYPE html PUBLIC "-//W3C//DT ...

  9. C/C++ static vs global

    static has a very simple logic to it. If a variable is static, it means that it is a global variable ...

  10. Java中的接口与抽象类

    抽象类很简单,就是多了个abstract关键字,可以有(也可以没有)只声明不定义的方法.不能实例化该类. 接口比较特殊: 无论你加不加public,接口中声明的方法都是public的,还有无论你加不加 ...