CRF++使用小结
1. 简述
最近要应用CRF模型,进行序列识别。选用了CRF++工具包,具体来说是在VS2008的C#环境下,使用CRF++的windows版本。本文总结一下了解到的和CRF++工具包相关的信息。
参考资料是CRF++的官方网站:CRF++: Yet Another CRF toolkit,网上的很多关于CRF++的博文就是这篇文章的全部或者部分的翻译,本文也翻译了一些。
2. 工具包下载
第一,版本选择,当前最新版本是2010-05-16日更新的CRF++ 0.54版本,不过这个版本以前我用过一次好像运行的时候存在一些问题,网上一些人也说有问题,所以这里用的是2009-05-06: CRF++ 0.53版本。关于运行出错的信息有http://ir.hit.edu.cn/bbs/viewthread.php?action=printable&tid=7945为证。
第二,文件下载,这个主页上面只有最新的0.54版本的文件,网上可以搜索,不过不是资源不是很多,我在CSDN上面下载了一个CRF++0.53版本的,包含linux和windows版本,其要花掉10个积分。因为,我没有找到比较稳定、长期、免费的链接,这里上传一份这个文件:CRF++ 0.53 Linux和Windows版本。
3. 工具包文件
doc文件夹:就是官方主页的内容。
example文件夹:有四个任务的训练数据、测试数据和模板文件。
sdk文件夹:CRF++的头文件和静态链接库。
crf_learn.exe:CRF++的训练程序。
crf_test.exe:CRF++的预测程序
libcrfpp.dll:训练程序和预测程序需要使用的静态链接库。
实际上,需要使用的就是crf_learn.exe,crf_test.exe和libcrfpp.dll,这三个文件。
4. 命令行格式
4.1 训练程序
命令行:
% crf_learn template_file train_file model_file
这个训练过程的时间、迭代次数等信息会输出到控制台上(感觉上是crf_learn程序的输出信息到标准输出流上了),如果想保存这些信息,我们可以将这些标准输出流到文件上,命令格式如下:
% crf_learn template_file train_file model_file >> train_info_file
有四个主要的参数可以调整:
-a CRF-L2 or CRF-L1
规范化算法选择。默认是CRF-L2。一般来说L2算法效果要比L1算法稍微好一点,虽然L1算法中非零特征的数值要比L2中大幅度的小。
-c float
这个参数设置CRF的hyper-parameter。c的数值越大,CRF拟合训练数据的程度越高。这个参数可以调整过度拟合和不拟合之间的平衡度。这个参数可以通过交叉验证等方法寻找较优的参数。
-f NUM
这个参数设置特征的cut-off threshold。CRF++使用训练数据中至少NUM次出现的特征。默认值为1。当使用CRF++到大规模数据时,只出现一次的特征可能会有几百万,这个选项就会在这样的情况下起到作用。
-p NUM
如果电脑有多个CPU,那么那么可以通过多线程提升训练速度。NUM是线程数量。
带两个参数的命令行例子:
% crf_learn -f 3 -c 1.5 template_file train_file model_file
4.2 测试程序
命令行:
% crf_test -m model_file test_files
有两个参数-v和-n都是显示一些信息的,-v可以显示预测标签的概率值,-n可以显示不同可能序列的概率值,对于准确率,召回率,运行效率,没有影响,这里不说明了。
与crf_learn类似,输出的结果放到了标准输出流上,而这个输出结果是最重要的预测结果信息(测试文件的内容+预测标注),同样可以使用重定向,将结果保存下来,命令行如下。
% crf_test -m model_file test_files >> result_file
5. 文件格式
5.1 训练文件
下面是一个训练文件的例子:
训练文件由若干个句子组成(可以理解为若干个训练样例),不同句子之间通过换行符分隔,上图中显示出的有两个句子。每个句子可以有若干组标签,最后一组标签是标注,上图中有三列,即第一列和第二列都是已知的数据,第三列是要预测的标注,以上面例子为例是,根据第一列的词语和和第二列的词性,预测第三列的标注。
当然这里有涉及到标注的问题,这个就是很多paper要研究的了,比如命名实体识别就有很多不同的标注集。这个超出本文范围。
5.2 测试文件
测试文件与训练文件格式自然是一样的,用过机器学习工具包的这个一般都理解吧。
与SVM不同,CRF++没有单独的结果文件,预测结果通过标准输出流输出了,因此前面4.2节的命令行中,将结果重定向到文件中了。结果文件比测试文件多了一列,即为预测的标签,我们可以计算最后两列,一列的标注的标签,一列的预测的标签,来得到标签预测的准确率。
5.3 模板文件
5.3.1 模板基础
模板文件中的每一行是一个模板。每个模板都是由%x[row,col]来指定输入数据中的一个token。row指定到当前token的行偏移,col指定列位置。
由上图可见,当前token是the这个单词。%x[-2,1]就就是the的前两行,1号列的元素(注意,列是从0号列开始的),即为PRP。
5.3.2 模板类型
有两种类型的模板,模板类型通过第一个字符指定。
Unigram template: first character, 'U'
当给出一个"U01:%x[0,1]"的模板时,CRF++会产生如下的一些特征函数集合(func1 ... funcN) 。
这几个函数我说明一下,%x[0,1]这个特征到前面的例子就是说,根据词语(第1列)的词性(第2列)来预测其标注(第3列),这些函数就是反应了训练样例的情况,func1反映了“训练样例中,词性是DT且标注是B-NP的情况”,func2反映了“训练样例中,词性是DT且标注是I-NP的情况”。
模板函数的数量是L*N,其中L是标注集中类别数量,N是从模板中扩展处理的字符串种类。
Bigram template: first character, 'B'
这个模板用来描述二元特征。这个模板会自动产生当前output token和前一个output token的合并。注意,这种类型的模板会产生L * L * N种不同的特征。
Unigram feature 和 Bigram feature有什么区别呢?
unigram/bigram很容易混淆,因为通过unigram-features也可以写出类似%x[-1,0]%x[0,0]这样的单词级别的bigram(二元特征)。而这里的unigram和bigram features指定是uni/bigrams的输出标签。
unigram: |output tag| x |all possible strings expanded with a macro|
bigram: |output tag| x |output tag| x |all possible strings expanded with a macro|
这里的一元/二元指的就是输出标签的情况,这个具体的例子我还没看到,example文件夹中四个例子,也都是只用了Unigram,没有用Bigarm,因此感觉一般Unigram feature就够了。
5.3.3 模板例子
这是CoNLL 2000的Base-NP chunking任务的模板例子。只使用了一个bigram template ('B')。这意味着只有前一个output token和当前token被当作bigram features。“#”开始的行是注释,空行没有意义。
6. 样例数据
example文件夹中有四个任务,basenp,chunking,JapaneseNE,seg。前两个是英文数据,后两个是日文数据。第一个应该是命名实体识别,第二个应该是分词,第三个应该是日文命名实体识别,第四个不清楚。这里主要跑了一下前两个任务,后两个是日文的搞不懂。
根据任务下面的linux的脚步文件,我写了个简单的windows批处理(其中用重定向保存了信息),比如命名为exec.bat,跑了一下。批处理文件放在要跑的任务的路径下就行,批处理文件内容如下:
..\..\crf_learn -c 10.0 template train.data model >> train-info.txt
..\..\crf_test -m model test.data >> test-info.txt
这里简单解释一下批处理,批处理文件运行后的当前目录就是该批处理文件所在的目录(至少我的是这样,如果不是,可以使用cd %~dp0这句命令,~dp0表示了“当前盘符和路径”),crf_learn和crf_test程序在当前目录的前两级目录上,所以用了..\..\。
7. 总结
命令行(命令行格式,参数,重定向)
调参数(一般也就调训练过程的c值)
标注集(这个很重要,研究相关)
模板文件(这个也很重要,研究相关)
模板文件的Unigram feature 和 Bigram feature,前面也说了,这里指的是output的一元/二元,这个应用的情况暂时还不是特别了解,还需要看一些paper可能才能知道。
CRF++使用小结的更多相关文章
- CRF++使用小结(转)
1. 简述 近期要应用CRF模型,进行序列识别.选用了CRF++工具包,详细来说是在VS2008的C#环境下,使用CRF++的windows版本号.本文总结一下了解到的和CRF++工具包相关的信息. ...
- 转:CRF++
CRF++使用小结 http://www.cnblogs.com/pangxiaodong/archive/2011/11/21/2256264.html 1. 简述 最近要应用CRF模型,进行序列 ...
- Python自然语言处理工具小结
Python自然语言处理工具小结 作者:白宁超 2016年11月21日21:45:26 目录 [Python NLP]干货!详述Python NLTK下如何使用stanford NLP工具包(1) [ ...
- 基于条件随机场(CRF)的命名实体识别
很久前做过一个命名实体识别的模块,现在有时间,记录一下. 一.要识别的对象 人名.地名.机构名 二.主要方法 1.使用CRF模型进行识别(识别对象都是最基础的序列,所以使用了好评率较高的序列识别算法C ...
- 条件随机场CRF(三) 模型学习与维特比算法解码
条件随机场CRF(一)从随机场到线性链条件随机场 条件随机场CRF(二) 前向后向算法评估标记序列概率 条件随机场CRF(三) 模型学习与维特比算法解码 在CRF系列的前两篇,我们总结了CRF的模型基 ...
- java jdk 8反编译工具JD-GUI、procyon-decompiler、luyten、crf下载使用简介
本文对常用的反编译工具进行简单介绍 JD-GUI.procyon-decompiler.luyten.crf 反编译工具分类 JD-GUI JDK7以及之前可以使用 JD-GUI,如果版本&g ...
- 条件随机场(conditional random field,CRF)模型初探
0. 引言 0x1:为什么会有条件随机场?它解决了什么问题? 在开始学习CRF条件随机场之前,我们需要先了解一下这个算法的来龙去脉,它是在什么情况下被提出的,是从哪个算法演进而来的,它又解决了哪些问题 ...
- Windows 环境下Java调用CRF++详解
1.步骤一览 2.步骤详情 2.1.环境准备 Swig(Simplified Wrapper and Interface Generator)下载,Windows操作系统直接解压即可使用 CRF++( ...
- 从零开始编写自己的C#框架(26)——小结
一直想写个总结,不过实在太忙了,所以一直拖啊拖啊,拖到现在,不过也好,有了这段时间的沉淀,发现自己又有了小小的进步.哈哈...... 原想框架开发的相关开发步骤.文档.代码.功能.部署等都简单的讲过了 ...
随机推荐
- Android软键盘弹出时把布局顶上去的解决方法
原文: 解决Andriod软键盘出现把原来的布局给顶上去的方法(转) 链接:http://blog.sina.com.cn/s/blog_9564cb6e0101g2eb.html 决方法,在main ...
- TextView使用SpannableString设置复合文本
TextView通常用来显示普通文本,但是有时候需要对其中某些文本进行样式.事件方面的设置.Android系统通过SpannableString类来对指定文本进行相关处理,具体有以下功能: 1.Bac ...
- 使用Mozilla Firefox插件RestClient测试Http API接口
RESTClient是Mozilla Firefox一个用于测试http请求插件.在火狐附加组件里面查询并安装,非常小巧,界面非常简单,使用非常的方便,看下面这张图你就全明白了,希望对新手有帮助! 1 ...
- Webservice接口和Http接口
WebService又是一种高级应用,与之前学习的Struts.Spring.Hibernate等框架不同.WebService是面向服务的架构(SOA),看起来像是比SSH框架要大.那么它到底是做什 ...
- 数据库事物四大特性-ACID
事务的:原子性.一致性.分离性.持久性 事物(transaction)是由一些列操作序列构成的执行单元,这些单元要么都做,要么不做,是一个不可分割的工作单元. 数据库事物的四个基本性质(ACID) 1 ...
- VIM 打造 c/c++ IDE
1. vim 的安装 $sudo apt-get install vim vim-scripts vim-doc <br> 其中vim-scripts包含了vim的一些基本插件,包括语法高 ...
- R统计建模与R软件
教材目录 第一章 概率统计的基本知识 第二章 R软件的使用 第三章 数据描述性分析 第四章 参数估计 第五章 假设检验 第六章 回归分析 第七章 方差分析 第八章 应用多元分析(I) 第九章 应用多元 ...
- dedecms5.7怎么取消邮箱验证以及dedecms 会员发布的文章不需要审核的解决方法
后台 ——系统基本参数——会员设置——会员权限开通状态——改为0 1.实现会员发布文章不需要审核,非会员发布需要审核 在member这个文件夹下找到archives_sg_add.php这个文件,打开 ...
- Unity3D研究院编辑器之不实例化Prefab获取删除更新组件(十五)
http://www.xuanyusong.com/archives/3727 感谢楼下的牛逼回复更正一下,我表示我也是才知道.. 其实不需要实例化也能查找,你依然直接用GetComponentsIn ...
- location.pathname;outline:medium;undefined不能加引号
1. location.pathname -- 返回URL的域名后的部分.例如 http://www.dreamdu.com/xhtml/ 返回/xhtml/ 2. 判断某个名称为undefined时 ...