SVM实用操作: svmtrain and svmclassify
load fisheriris
data = [meas(:,), meas(:,)];
groups = ismember(species,'setosa');
[train, test] = crossvalind('holdOut',groups);
cp = classperf(groups);
svmStruct = svmtrain(data(train,:),groups(train),'showplot',true); classes = svmclassify(svmStruct,data(test,:),'showplot',true);
classperf(cp,classes,test);
svmstruct = svmtrain(Training, Group)
Rows of TRAINING correspond to observations; columns correspond to features. Y is a column vector that contains the known class labels for TRAINING.
Y is a grouping variable, i.e., it can be a categorical, numeric, or logical vector; a cell vector of strings; or a character matrix with each row representing a
class label (see help for groupingvariable). Each element of Y specifies the group the corresponding row of TRAINING belongs to.
TRAINING and Y must have the same number of rows. SVMSTRUCT contains information about the trained classifier, including the support vectors, that
is used by SVMCLASSIFY for classification. svmtrain treats NaNs, empty strings or 'undefined' values as missing values and ignores the corresponding
rows in TRAINING and Y.
Group = svmclassify(SVMStruct, Sample)
>> help svmclassify
svmclassify Classify data using a support vector machine
GROUP = svmclassify(SVMSTRUCT, TEST) classifies each row in TEST using the support vector machine classifier structure SVMSTRUCT created
using SVMTRAIN, and returns the predicted class level GROUP. TEST must have the same number of columns as the data used to train the
classifier in SVMTRAIN. GROUP indicates the group to which each row of TEST is assigned.
GROUP = svmclassify(...,'SHOWPLOT',true) plots the test data TEST on the figure created using the SHOWPLOT option in SVMTRAIN.
-----------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------
利用libsvm做多分类问题的经典案例:
[y, x] = libsvmread('iris.scale.txt');
m = svmtrain(y, x, '-t 0');
test_y=[1;2;3];
test_x=[-0.555556 0.25 -0.864407 -0.916667;
0.444444 -0.0833334 0.322034 0.166667 ;
-0.277778 -0.333333 0.322034 0.583333 ];
[predict_label, accuracy, prob_estimates] = svmpredict(test_y, test_x, m);
数据:'iris.scale'可在Libsvm网站上有。共有三类。
iris.scale.txt 文档为: :-0.555556 :0.25 :-0.864407 :-0.916667
:-0.666667 :-0.166667 :-0.864407 :-0.916667
:-0.777778 :-0.898305 :-0.916667
:-0.833333 :-0.0833334 :-0.830508 :-0.916667
:-0.611111 :0.333333 :-0.864407 :-0.916667
:-0.388889 :0.583333 :-0.762712 :-0.75
:-0.833333 :0.166667 :-0.864407 :-0.833333
:-0.611111 :0.166667 :-0.830508 :-0.916667
:-0.944444 :-0.25 :-0.864407 :-0.916667
:-0.666667 :-0.0833334 :-0.830508 :-
:-0.388889 :0.416667 :-0.830508 :-0.916667
:-0.722222 :0.166667 :-0.79661 :-0.916667
:-0.722222 :-0.166667 :-0.864407 :-
:- :-0.166667 :-0.966102 :-
:-0.166667 :0.666667 :-0.932203 :-0.916667
:-0.222222 : :-0.830508 :-0.75
:-0.388889 :0.583333 :-0.898305 :-0.75
:-0.555556 :0.25 :-0.864407 :-0.833333
:-0.222222 :0.5 :-0.762712 :-0.833333
:-0.555556 :0.5 :-0.830508 :-0.833333
:-0.388889 :0.166667 :-0.762712 :-0.916667
:-0.555556 :0.416667 :-0.830508 :-0.75
:-0.833333 :0.333333 :- :-0.916667
:-0.555556 :0.0833333 :-0.762712 :-0.666667
:-0.722222 :0.166667 :-0.694915 :-0.916667
:-0.611111 :-0.166667 :-0.79661 :-0.916667
:-0.611111 :0.166667 :-0.79661 :-0.75
:-0.5 :0.25 :-0.830508 :-0.916667
:-0.5 :0.166667 :-0.864407 :-0.916667
:-0.777778 :-0.79661 :-0.916667
:-0.722222 :-0.0833334 :-0.79661 :-0.916667
:-0.388889 :0.166667 :-0.830508 :-0.75
:-0.5 :0.75 :-0.830508 :-
:-0.333333 :0.833333 :-0.864407 :-0.916667
:-0.666667 :-0.0833334 :-0.830508 :-
:-0.611111 :-0.932203 :-0.916667
:-0.333333 :0.25 :-0.898305 :-0.916667
:-0.666667 :-0.0833334 :-0.830508 :-
:-0.944444 :-0.166667 :-0.898305 :-0.916667
:-0.555556 :0.166667 :-0.830508 :-0.916667
:-0.611111 :0.25 :-0.898305 :-0.833333
:-0.888889 :-0.75 :-0.898305 :-0.833333
:-0.944444 :-0.898305 :-0.916667
:-0.611111 :0.25 :-0.79661 :-0.583333
:-0.555556 :0.5 :-0.694915 :-0.75
:-0.722222 :-0.166667 :-0.864407 :-0.833333
:-0.555556 :0.5 :-0.79661 :-0.916667
:-0.833333 :-0.864407 :-0.916667
:-0.444444 :0.416667 :-0.830508 :-0.916667
:-0.611111 :0.0833333 :-0.864407 :-0.916667
:0.5 :0.254237 :0.0833333
:0.166667 :0.186441 :0.166667
:0.444444 :-0.0833334 :0.322034 :0.166667
:-0.333333 :-0.75 :0.0169491 :-4.03573e-08
:0.222222 :-0.333333 :0.220339 :0.166667
:-0.222222 :-0.333333 :0.186441 :-4.03573e-08
:0.111111 :0.0833333 :0.254237 :0.25
:-0.666667 :-0.666667 :-0.220339 :-0.25
:0.277778 :-0.25 :0.220339 :-4.03573e-08
:-0.5 :-0.416667 :-0.0169491 :0.0833333
:-0.611111 :- :-0.152542 :-0.25
:-0.111111 :-0.166667 :0.0847457 :0.166667
:-0.0555556 :-0.833333 :0.0169491 :-0.25
:-1.32455e-07 :-0.25 :0.254237 :0.0833333
:-0.277778 :-0.25 :-0.118644 :-4.03573e-08
:0.333333 :-0.0833334 :0.152542 :0.0833333
:-0.277778 :-0.166667 :0.186441 :0.166667
:-0.166667 :-0.416667 :0.0508474 :-0.25
:0.0555554 :-0.833333 :0.186441 :0.166667
:-0.277778 :-0.583333 :-0.0169491 :-0.166667
:-0.111111 :0.288136 :0.416667
:-1.32455e-07 :-0.333333 :0.0169491 :-4.03573e-08
:0.111111 :-0.583333 :0.322034 :0.166667
:-1.32455e-07 :-0.333333 :0.254237 :-0.0833333
:0.166667 :-0.25 :0.118644 :-4.03573e-08
:0.277778 :-0.166667 :0.152542 :0.0833333
:0.388889 :-0.333333 :0.288136 :0.0833333
:0.333333 :-0.166667 :0.355932 :0.333333
:-0.0555556 :-0.25 :0.186441 :0.166667
:-0.222222 :-0.5 :-0.152542 :-0.25
:-0.333333 :-0.666667 :-0.0508475 :-0.166667
:-0.333333 :-0.666667 :-0.0847458 :-0.25
:-0.166667 :-0.416667 :-0.0169491 :-0.0833333
:-0.0555556 :-0.416667 :0.38983 :0.25
:-0.388889 :-0.166667 :0.186441 :0.166667
:-0.0555556 :0.166667 :0.186441 :0.25
:0.333333 :-0.0833334 :0.254237 :0.166667
:0.111111 :-0.75 :0.152542 :-4.03573e-08
:-0.277778 :-0.166667 :0.0508474 :-4.03573e-08
:-0.333333 :-0.583333 :0.0169491 :-4.03573e-08
:-0.333333 :-0.5 :0.152542 :-0.0833333
:-1.32455e-07 :-0.166667 :0.220339 :0.0833333
:-0.166667 :-0.5 :0.0169491 :-0.0833333
:-0.611111 :-0.75 :-0.220339 :-0.25
:-0.277778 :-0.416667 :0.0847457 :-4.03573e-08
:-0.222222 :-0.166667 :0.0847457 :-0.0833333
:-0.222222 :-0.25 :0.0847457 :-4.03573e-08
:0.0555554 :-0.25 :0.118644 :-4.03573e-08
:-0.555556 :-0.583333 :-0.322034 :-0.166667
:-0.222222 :-0.333333 :0.0508474 :-4.03573e-08
:0.111111 :0.0833333 :0.694915 :
:-0.166667 :-0.416667 :0.38983 :0.5
:0.555555 :-0.166667 :0.661017 :0.666667
:0.111111 :-0.25 :0.559322 :0.416667
:0.222222 :-0.166667 :0.627119 :0.75
:0.833333 :-0.166667 :0.898305 :0.666667
:-0.666667 :-0.583333 :0.186441 :0.333333
:0.666667 :-0.25 :0.79661 :0.416667
:0.333333 :-0.583333 :0.627119 :0.416667
:0.611111 :0.333333 :0.728813 :
:0.222222 :0.38983 :0.583333
:0.166667 :-0.416667 :0.457627 :0.5
:0.388889 :-0.166667 :0.525424 :0.666667
:-0.222222 :-0.583333 :0.355932 :0.583333
:-0.166667 :-0.333333 :0.38983 :0.916667
:0.166667 :0.457627 :0.833333
:0.222222 :-0.166667 :0.525424 :0.416667
:0.888889 :0.5 :0.932203 :0.75
:0.888889 :-0.5 : :0.833333
:-0.0555556 :-0.833333 :0.355932 :0.166667
:0.444444 :0.59322 :0.833333
:-0.277778 :-0.333333 :0.322034 :0.583333
:0.888889 :-0.333333 :0.932203 :0.583333
:0.111111 :-0.416667 :0.322034 :0.416667
:0.333333 :0.0833333 :0.59322 :0.666667
:0.611111 :0.694915 :0.416667
:0.0555554 :-0.333333 :0.288136 :0.416667
:-1.32455e-07 :-0.166667 :0.322034 :0.416667
:0.166667 :-0.333333 :0.559322 :0.666667
:0.611111 :-0.166667 :0.627119 :0.25
:0.722222 :-0.333333 :0.728813 :0.5
: :0.5 :0.830508 :0.583333
:0.166667 :-0.333333 :0.559322 :0.75
:0.111111 :-0.333333 :0.38983 :0.166667
:-1.32455e-07 :-0.5 :0.559322 :0.0833333
:0.888889 :-0.166667 :0.728813 :0.833333
:0.111111 :0.166667 :0.559322 :0.916667
:0.166667 :-0.0833334 :0.525424 :0.416667
:-0.0555556 :-0.166667 :0.288136 :0.416667
:0.444444 :-0.0833334 :0.491525 :0.666667
:0.333333 :-0.0833334 :0.559322 :0.916667
:0.444444 :-0.0833334 :0.38983 :0.833333
:-0.166667 :-0.416667 :0.38983 :0.5
:0.388889 :0.661017 :0.833333
:0.333333 :0.0833333 :0.59322 :
:0.333333 :-0.166667 :0.423729 :0.833333
:0.111111 :-0.583333 :0.355932 :0.5
:0.222222 :-0.166667 :0.423729 :0.583333
:0.0555554 :0.166667 :0.491525 :0.833333
:-0.111111 :-0.166667 :0.38983 :0.416667
SVM实用操作: svmtrain and svmclassify的更多相关文章
- 提高开发效率的 Eclipse 实用操作
工欲善其事,必先利其器.对于程序员来说,Eclipse便是其中的一个“器”.本文会从Eclipse快捷键和实用技巧这两个篇章展开介绍.Eclipse快捷键用熟后,不用鼠标,便可进行编程开发,避免鼠标分 ...
- Chrome 开发者工具实用操作
Chrome 开发者工具实用操作 https://umaar.com/dev-tips/
- KiCAD实用操作
KiCAD实用操作之一:自动编辑线宽 今天偶然间发现的一个比较实用的功能,算是KiCAD的一个优点吧(或许是在AD上面没发现):当整个PCB布完线或者在布线过程中,我们有可能需要对某个线的宽度进行调整 ...
- (原)Matlab的svmtrain和svmclassify
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5554551.html 参考网址: http://www.cnblogs.com/zhangchaoya ...
- 能够提高开发效率的Eclipse实用操作
工欲善其事,必先利其器.对于程序员来说,Eclipse便是其中的一个“器”.本文会从Eclipse快捷键和实用技巧这两个篇章展开介绍.Eclipse快捷键用熟后,不用鼠标,便可进行编程开发,避免鼠标分 ...
- 能够提高开发效率的 Eclipse 实用操作
工欲善其事,必先利其器.对于程序员来说,Eclipse便是其中的一个“器”.本文会从Eclipse快捷键和实用技巧这两个篇章展开介绍.Eclipse快捷键用熟后,不用鼠标,便可进行编程开发,避免鼠标分 ...
- VS2019 实用操作
本文列出了在编写程序过程中的几个非常实用的操作方式,通过这些操作方式,可以在一定程度上减少重复操作.提高编码效率.改善编程体验. 列模式操作 列操作是一项很常用且实用的功能,可以一次性修改不同的行. ...
- Netcat实用操作
写久了web倦了,第n次开始尝试网络开发,于是熟悉一下常用工具. 尝试了一下netcat来测试服务器,或者充当客户端都异常好用.于是记录一下常用的一下命令 1. 充当服务器,或者客户端进行访问 通过n ...
- Myeclipse学习总结(8)——Eclipse实用操作
工欲善其事,必先利其器.对于程序员来说,Eclipse便是其中的一个"器".本文会从Eclipse快捷键和实用技巧这两个篇章展开介绍.Eclipse快捷键用熟后,不用鼠标,便可进行 ...
随机推荐
- SharePoint 2010 BCS - 简单实例(二)外部列表创建
博客地址 http://blog.csdn.net/foxdave 接上篇 由于图片稍多篇幅过长影响阅读,所以分段来写. 添加完数据源之后,我们需要为我们要放到SharePoint上的数据表定义操作, ...
- Java知识结构思维导图
- iOS 7 教程:定制iOS 7中的导航栏和状态栏
目录(?)[-] iOS 7中默认的导航栏 设置导航栏的背景颜色 在导航栏中使用背景图片 定制返回按钮的颜 修改导航栏标题的字体 修改导航栏标题为图片 添加多个按钮 修改状态栏的风格 隐藏状态栏 总结 ...
- WPF制作子窗体的弹出动画效果
创建一个WPF应用程序WpfApplication1,新建个窗体DialogWin <Windowx:Class="WpfApplication1.DialogWin" xm ...
- webservice实验一
实验目的:安装jdk1.6_21以后的版本,利用JAX-WS API自己发布webservice并调用,以及用wsimport生成webservice客户端代码调用一个免费的web服务(如webxml ...
- linux命令:cat
1:命令介绍: cat用来打印标准输入或连接文件.tac是其相反命令,从最后一行开始打印. 2:命令格式: cat [选项] 文件 3:命令参数: -A, --show-all 等 ...
- linux命令:mv
1.命令介绍: mv是move的缩写,用来移动文件或重命名文件 2.命令格式: mv [选项] 源文件 目标文件 3.命令参数: -b :若需覆盖文件,则覆盖前先行备份. -f --force:fo ...
- magento后台登陆被锁定 索引报错的解决:General error: 1205 Lock wait timeout
1. magento在索引的时候用shell,有时候会报错: General error: 1205 Lock wait timeout exceeded 这个时候,是因为行锁的原因,在表中您直接用s ...
- 联合与枚举 、 高级指针 、 C语言标准库(一)
1 输入一个整数,求春夏秋冬 1.1 问题 在实际应用中,有的变量只有几种可能取值.如人的性别只有两种可能取值,星期只有七种可能取值.在 C 语言中对这样取值比较特殊的变量可以定义为枚举类型.所谓枚举 ...
- Optimizing shaper — hashing filters (HTB)
I have a very nice shaper in my linux box :-) How the configurator works — it’s another question, he ...