ASE又走到了关键的一步  要生成能决定是否有差异表达的table.

准备借鉴一下cuffdiff和edgeR 的结果

cuffdiff对差异表达基因的描述:

一共十四列:

第一列, test_id

a unique identifer describing the transcript, gene, primary transcript, or CDS being tested.

eg XLOC_000003

第二列,gene_id

eg XLOC_000003

第三列, gene

第四列, locus

genomic coordinates for easy browsing to the genes or transcripts being tested.

eg contig_23646:3511-3922

第五列, sample1

label (or number if no labels provided) of the first sample being tested

eg Sample_E

第六列, sample2

label (or number if no labels provided) of the second sample being tested

eg Sample_FHM

第七列, status

can be one of OK(test successful), NOTEST(not enough alignments for testing), LOWDATA(too many fragments in locus), or FAIL, when an ill-conditioned covariance matrix or other numerical exception prevents testing

eg OK

第八列 value_1

FPKM of the gene in sample 1

eg 339.567

第九列 value_2

FPKM of the gene in sample 2

eg 465.939

第十列 log2(fold change)

the (base 2 ) log of the fold change 1/2

eg 0.456447

第十一列 test stat

the value of the test statistic used to compute significance of the observed change in FPKM

不懂什么意思 估计要去翻统计书的节奏了

eg 0.361712

第十二列 p_value

the uncorrected p-value of the test statistic

eg 0.4849

第十三列 q_value

the FDR-adjusted p-value of the test statistic

eg 0.756741

第十四列 significant

can be either 'yes' or 'no' , depending on whether p is greater than the FDR after Benjamini-Hochberg correction for multiple-testing

eg no

The FPKM value represents the concentration of a transcript in your samples, normalized for observed read counts and gene length. Thus fields 7,8 represent measurements for your samples and field 9 is simply a ratio of the two. You might look up FPKM or RPKM values if you're unsure what they represent. Fields 11 and 12 are p-value and q-value. These are values associated with the measured variation or uncertainty when you make repeated measurements of something. You should look up what a p-value and an "adjusted p-value" are (the adjusted one is important for you to understand if you're going to do any genomic data analysis). The 13th field is simply a flag based on whether the value in field 11 or 12 is less than 0.05 (I forget which one, but you could figure it out by exploring your data).

edge R 结果对差异表达基因的描述:

Differential expression analysis of RNA-seq and digital gene expression profiles with biological replication.  Uses empirical Bayes estimation and exact tests based on the negative binomial distribution.  Also useful for differential signal analysis with other types of genome-scale count data.(貌似两者采用的分布模型是不一样的哦~~)

by freemao

FAFU

free_mao@qq.com

cuffdiff 和 edgeR 对差异表达基因的描述的更多相关文章

  1. RNA-seq差异表达基因分析之TopHat篇

    RNA-seq差异表达基因分析之TopHat篇 发表于2012 年 10 月 23 日 TopHat是基于Bowtie的将RNA-Seq数据mapping到参考基因组上,从而鉴定可变剪切(exon-e ...

  2. 使用GEO数据库来筛选差异表达基因,KOBAS进行KEGG注释分析

    前言 本文主要演示GEO数据库的一些工具,使用的数据是2015年在Nature Communications上发表的文章Regulation of autophagy and the ubiquiti ...

  3. 使用Trinity拼接以及分析差异表达一个小例子

    使用Trinity拼接以及分析差异表达一个小例子  2017-06-12 09:42:47     293     0     0 Trinity 将测序数据分为许多独立的de Brujin grap ...

  4. 使用limma、Glimma和edgeR,RNA-seq数据分析易如反掌

    使用limma.Glimma和edgeR,RNA-seq数据分析易如反掌 Charity Law1, Monther Alhamdoosh2, Shian Su3, Xueyi Dong3, Luyi ...

  5. Differential expression analysis for paired RNA-seq data 成对RNA-seq数据的差异表达分析

    Differential expression analysis for paired RNA-seq data 抽象背景:RNA-Seq技术通过产生序列读数并在不同生物条件下计数其频率来测量转录本丰 ...

  6. RNA-Seq differential expression analysis: An extended review and a software tool RNA-Seq差异表达分析: 扩展评论和软件工具

    RNA-Seq differential expression analysis: An extended review and a software tool   RNA-Seq差异表达分析: 扩展 ...

  7. 差异基因分析:fold change(差异倍数), P-value(差异的显著性)

    在做基因表达分析时必然会要做差异分析(DE) DE的方法主要有两种: Fold change t-test fold change的意思是样本质检表达量的差异倍数,log2 fold change的意 ...

  8. edgeR使用学习【转载】

    转自:http://yangl.net/2016/09/27/edger_usage/ 1.Quick start 2. 利用edgeR分析RNA-seq鉴别差异表达基因: #加载软件包 librar ...

  9. Sensitivity, specificity, and reproducibility of RNA-Seq differential expression calls RNA-Seq差异表达调用的灵敏度 特异性 重复性

    Sensitivity, specificity, and reproducibility of RNA-Seq differential expression calls RNA-Seq差异表达调用 ...

随机推荐

  1. ant非法字符:\65279 错误

    ant非法字符:\65279 错误前段时间用ant把项目打包,遇到一个问题:编译java文件的时候,有些java文件报非法字符 \65279错误,在网上找和很多方法,也试了很多方法,换JDK,网上说的 ...

  2. Group by的使用方法

    sql中如果要分组查询,一般都会使用到group by语句,如何熟练使用group by语句呢,我分以下几点进行总结. Group by与聚合函数 Group by与Having 需要注意的地方 Gr ...

  3. [示例]NSDictionary编程题-字典的排序应用(iOS5班)

    代码? #import <Foundation/Foundation.h> int main(int argc, const char * argv[]) { @autoreleasepo ...

  4. C#压缩图片1

    using System;using System.Collections.Generic;using System.Drawing;using System.Drawing.Drawing2D;us ...

  5. 部分SIM卡被曝存安全漏洞:7.5亿部手机受牵连

    7月22日消息,据国外媒体报道,一安全研究人员发现部分移动SIM卡所使用的加密方式存在一个安全漏洞,可能会导致手机被黑客远程控制. DES数据加密标准的SIM卡——DES是一种较旧的标准,目前正被部分 ...

  6. node.js安装及grunt插件,如何进行脚本压缩

    http://gruntjs.com/pluginshttp://gruntjs.com/getting-startedhttp://gruntjs.com/configuring-tasks#glo ...

  7. Linux-如何添加路由表

    linux下静态路由修改命令方法一:添加路由route add -net 192.168.0.0/24 gw 192.168.0.1route add -host 192.168.1.1 dev 19 ...

  8. bzoj 3687 bitset的运用

    题目大意: 小呆开始研究集合论了,他提出了关于一个数集四个问题:1. 子集的异或和的算术和.2. 子集的异或和的异或和.3. 子集的算术和的算术和.4. 子集的算术和的异或和.目前为止,小呆已经解决了 ...

  9. jQuery 通用表单方法

    表单验证一直是一个麻烦的事情,让很多人望而退步,之前想过一个验证的好方法,但是有bug,昨晚请教了juyling.com的王员外,顺利解决. 以下是js代码     function mySubmit ...

  10. 初识VBS

    做了测试快一年了吧,迫于无奈,要学习自动化的只是,首先想到了QTP,但是QTP的脚本是VBS,所以必须要会VBS. VBS其实就是一门计算机编程语言,但是缺少计算机程序语言中的部分要素,对于事件的描述 ...