cuffdiff 和 edgeR 对差异表达基因的描述
ASE又走到了关键的一步 要生成能决定是否有差异表达的table.
准备借鉴一下cuffdiff和edgeR 的结果
cuffdiff对差异表达基因的描述:
一共十四列:
第一列, test_id
a unique identifer describing the transcript, gene, primary transcript, or CDS being tested.
eg XLOC_000003
第二列,gene_id
eg XLOC_000003
第三列, gene
第四列, locus
genomic coordinates for easy browsing to the genes or transcripts being tested.
eg contig_23646:3511-3922
第五列, sample1
label (or number if no labels provided) of the first sample being tested
eg Sample_E
第六列, sample2
label (or number if no labels provided) of the second sample being tested
eg Sample_FHM
第七列, status
can be one of OK(test successful), NOTEST(not enough alignments for testing), LOWDATA(too many fragments in locus), or FAIL, when an ill-conditioned covariance matrix or other numerical exception prevents testing
eg OK
第八列 value_1
FPKM of the gene in sample 1
eg 339.567
第九列 value_2
FPKM of the gene in sample 2
eg 465.939
第十列 log2(fold change)
the (base 2 ) log of the fold change 1/2
eg 0.456447
第十一列 test stat
the value of the test statistic used to compute significance of the observed change in FPKM
不懂什么意思 估计要去翻统计书的节奏了
eg 0.361712
第十二列 p_value
the uncorrected p-value of the test statistic
eg 0.4849
第十三列 q_value
the FDR-adjusted p-value of the test statistic
eg 0.756741
第十四列 significant
can be either 'yes' or 'no' , depending on whether p is greater than the FDR after Benjamini-Hochberg correction for multiple-testing
eg no
The FPKM value represents the concentration of a transcript in your samples, normalized for observed read counts and gene length. Thus fields 7,8 represent measurements for your samples and field 9 is simply a ratio of the two. You might look up FPKM or RPKM values if you're unsure what they represent. Fields 11 and 12 are p-value and q-value. These are values associated with the measured variation or uncertainty when you make repeated measurements of something. You should look up what a p-value and an "adjusted p-value" are (the adjusted one is important for you to understand if you're going to do any genomic data analysis). The 13th field is simply a flag based on whether the value in field 11 or 12 is less than 0.05 (I forget which one, but you could figure it out by exploring your data).
edge R 结果对差异表达基因的描述:
Differential expression analysis of RNA-seq and digital gene expression profiles with biological replication. Uses empirical Bayes estimation and exact tests based on the negative binomial distribution. Also useful for differential signal analysis with other types of genome-scale count data.(貌似两者采用的分布模型是不一样的哦~~)
by freemao
FAFU
free_mao@qq.com
cuffdiff 和 edgeR 对差异表达基因的描述的更多相关文章
- RNA-seq差异表达基因分析之TopHat篇
RNA-seq差异表达基因分析之TopHat篇 发表于2012 年 10 月 23 日 TopHat是基于Bowtie的将RNA-Seq数据mapping到参考基因组上,从而鉴定可变剪切(exon-e ...
- 使用GEO数据库来筛选差异表达基因,KOBAS进行KEGG注释分析
前言 本文主要演示GEO数据库的一些工具,使用的数据是2015年在Nature Communications上发表的文章Regulation of autophagy and the ubiquiti ...
- 使用Trinity拼接以及分析差异表达一个小例子
使用Trinity拼接以及分析差异表达一个小例子 2017-06-12 09:42:47 293 0 0 Trinity 将测序数据分为许多独立的de Brujin grap ...
- 使用limma、Glimma和edgeR,RNA-seq数据分析易如反掌
使用limma.Glimma和edgeR,RNA-seq数据分析易如反掌 Charity Law1, Monther Alhamdoosh2, Shian Su3, Xueyi Dong3, Luyi ...
- Differential expression analysis for paired RNA-seq data 成对RNA-seq数据的差异表达分析
Differential expression analysis for paired RNA-seq data 抽象背景:RNA-Seq技术通过产生序列读数并在不同生物条件下计数其频率来测量转录本丰 ...
- RNA-Seq differential expression analysis: An extended review and a software tool RNA-Seq差异表达分析: 扩展评论和软件工具
RNA-Seq differential expression analysis: An extended review and a software tool RNA-Seq差异表达分析: 扩展 ...
- 差异基因分析:fold change(差异倍数), P-value(差异的显著性)
在做基因表达分析时必然会要做差异分析(DE) DE的方法主要有两种: Fold change t-test fold change的意思是样本质检表达量的差异倍数,log2 fold change的意 ...
- edgeR使用学习【转载】
转自:http://yangl.net/2016/09/27/edger_usage/ 1.Quick start 2. 利用edgeR分析RNA-seq鉴别差异表达基因: #加载软件包 librar ...
- Sensitivity, specificity, and reproducibility of RNA-Seq differential expression calls RNA-Seq差异表达调用的灵敏度 特异性 重复性
Sensitivity, specificity, and reproducibility of RNA-Seq differential expression calls RNA-Seq差异表达调用 ...
随机推荐
- UVALive 6948 Jokewithpermutation dfs
题目链接:UVALive 6948 Jokewithpermutation 题意:给一串数字序列,没有空格,拆成从1到N的连续数列. dfs. 可以计算出N的值,也可以直接检验当前数组是否合法. # ...
- 5.2使用select,poll
5.2 使用select,poll // CPU占用率低,适用于很多简单场合 参考:UNIX环境高级编程 I/O多路转接 监测多个文件,只要有某一个文件可读/可写/异常或超时,即返回 int se ...
- Java异常--读书笔记
1. Java将异常分为两种:Checked异常和Runtime异常,Java认为Checked异常都是可以在编译阶段被处理的异常,所以强制程序处理所有的Checked异常:Runtime异常则无需处 ...
- 用C#操作vss、msbuild、reactor
一.命令行 凡是支持命令行的工具,都可以通过cmd.exe操作.如下: var p = new Process(); p.StartInfo.FileName = "cmd.exe" ...
- 数据结构-AVL树
实现: #ifndef AVL_TREE_H #define AVL_TREE_H #include "dsexceptions.h" #include <iostream& ...
- matlab 画框(三) 画框并保存图像
initstate = [x y w h];%-----------------------------------------Show the tracking resultimshow(uint8 ...
- JVM-class文件完全解析-字段表集合
字段表集合 这个class文件的解析,分析得有点太久了.前面介绍类魔数,次版本号,主板本号,常量池入口,常量池,访问标志,类索引,父类索引和接口索引集合.下面就应该到字段表集合了. 紧接着接口索引 ...
- MySQL表的增删改查和列的修改(二)
一.使用Like模糊查找搜索前缀为以“exam_”开头的表名 show tables like 'exam_%' ; 语句结束符号是:也是用\G来表示 二.MySQL表的CRUD 2.1 创建表: C ...
- uva11059
除法(Division,uva725) 输入整数n,按从小到大的顺序输出所有形如abcde/fghij=n的表达式,其中a~j恰好为数字0~9的一个排列(可以有前导0),2<=n<=79. ...
- 《AppletButtonEvent.java》
//AppletButtonEvent.java import java.applet.*; import java.awt.*; import java.awt.event.*; public cl ...