ASE又走到了关键的一步  要生成能决定是否有差异表达的table.

准备借鉴一下cuffdiff和edgeR 的结果

cuffdiff对差异表达基因的描述:

一共十四列:

第一列, test_id

a unique identifer describing the transcript, gene, primary transcript, or CDS being tested.

eg XLOC_000003

第二列,gene_id

eg XLOC_000003

第三列, gene

第四列, locus

genomic coordinates for easy browsing to the genes or transcripts being tested.

eg contig_23646:3511-3922

第五列, sample1

label (or number if no labels provided) of the first sample being tested

eg Sample_E

第六列, sample2

label (or number if no labels provided) of the second sample being tested

eg Sample_FHM

第七列, status

can be one of OK(test successful), NOTEST(not enough alignments for testing), LOWDATA(too many fragments in locus), or FAIL, when an ill-conditioned covariance matrix or other numerical exception prevents testing

eg OK

第八列 value_1

FPKM of the gene in sample 1

eg 339.567

第九列 value_2

FPKM of the gene in sample 2

eg 465.939

第十列 log2(fold change)

the (base 2 ) log of the fold change 1/2

eg 0.456447

第十一列 test stat

the value of the test statistic used to compute significance of the observed change in FPKM

不懂什么意思 估计要去翻统计书的节奏了

eg 0.361712

第十二列 p_value

the uncorrected p-value of the test statistic

eg 0.4849

第十三列 q_value

the FDR-adjusted p-value of the test statistic

eg 0.756741

第十四列 significant

can be either 'yes' or 'no' , depending on whether p is greater than the FDR after Benjamini-Hochberg correction for multiple-testing

eg no

The FPKM value represents the concentration of a transcript in your samples, normalized for observed read counts and gene length. Thus fields 7,8 represent measurements for your samples and field 9 is simply a ratio of the two. You might look up FPKM or RPKM values if you're unsure what they represent. Fields 11 and 12 are p-value and q-value. These are values associated with the measured variation or uncertainty when you make repeated measurements of something. You should look up what a p-value and an "adjusted p-value" are (the adjusted one is important for you to understand if you're going to do any genomic data analysis). The 13th field is simply a flag based on whether the value in field 11 or 12 is less than 0.05 (I forget which one, but you could figure it out by exploring your data).

edge R 结果对差异表达基因的描述:

Differential expression analysis of RNA-seq and digital gene expression profiles with biological replication.  Uses empirical Bayes estimation and exact tests based on the negative binomial distribution.  Also useful for differential signal analysis with other types of genome-scale count data.(貌似两者采用的分布模型是不一样的哦~~)

by freemao

FAFU

free_mao@qq.com

cuffdiff 和 edgeR 对差异表达基因的描述的更多相关文章

  1. RNA-seq差异表达基因分析之TopHat篇

    RNA-seq差异表达基因分析之TopHat篇 发表于2012 年 10 月 23 日 TopHat是基于Bowtie的将RNA-Seq数据mapping到参考基因组上,从而鉴定可变剪切(exon-e ...

  2. 使用GEO数据库来筛选差异表达基因,KOBAS进行KEGG注释分析

    前言 本文主要演示GEO数据库的一些工具,使用的数据是2015年在Nature Communications上发表的文章Regulation of autophagy and the ubiquiti ...

  3. 使用Trinity拼接以及分析差异表达一个小例子

    使用Trinity拼接以及分析差异表达一个小例子  2017-06-12 09:42:47     293     0     0 Trinity 将测序数据分为许多独立的de Brujin grap ...

  4. 使用limma、Glimma和edgeR,RNA-seq数据分析易如反掌

    使用limma.Glimma和edgeR,RNA-seq数据分析易如反掌 Charity Law1, Monther Alhamdoosh2, Shian Su3, Xueyi Dong3, Luyi ...

  5. Differential expression analysis for paired RNA-seq data 成对RNA-seq数据的差异表达分析

    Differential expression analysis for paired RNA-seq data 抽象背景:RNA-Seq技术通过产生序列读数并在不同生物条件下计数其频率来测量转录本丰 ...

  6. RNA-Seq differential expression analysis: An extended review and a software tool RNA-Seq差异表达分析: 扩展评论和软件工具

    RNA-Seq differential expression analysis: An extended review and a software tool   RNA-Seq差异表达分析: 扩展 ...

  7. 差异基因分析:fold change(差异倍数), P-value(差异的显著性)

    在做基因表达分析时必然会要做差异分析(DE) DE的方法主要有两种: Fold change t-test fold change的意思是样本质检表达量的差异倍数,log2 fold change的意 ...

  8. edgeR使用学习【转载】

    转自:http://yangl.net/2016/09/27/edger_usage/ 1.Quick start 2. 利用edgeR分析RNA-seq鉴别差异表达基因: #加载软件包 librar ...

  9. Sensitivity, specificity, and reproducibility of RNA-Seq differential expression calls RNA-Seq差异表达调用的灵敏度 特异性 重复性

    Sensitivity, specificity, and reproducibility of RNA-Seq differential expression calls RNA-Seq差异表达调用 ...

随机推荐

  1. php 采集类snoopy http://www.jb51.net/article/27568.htm | cURL、file_get_contents、snoopy.class.php 优缺点

    Snoopy是一个php类,用来模拟浏览器的功能,可以获取网页内容,发送表单. Snoopy的特点: 1.抓取网页的内容 fetch 2.抓取网页的文本内容 (去除HTML标签) fetchtext ...

  2. Redis persistence demystified - part 1

    关于Redis我的一部分工作是阅读博客,论坛以及twitter时间线(time line).对于开发者来说,能够了解用户社区,非用户社区如果理解他正在开发的产品是非常重要的.据我所知,持久化特性是最易 ...

  3. 小记:xml画一个爱心。

      aixin.xml: <!-- height:width=viewportHeight:viewportWidth --> <vector xmlns:android=" ...

  4. (DFS)hdoj1010-Tempter of the Bone

    #include<cstdio> #include<cmath> #include<stdlib.h> ][]={{,},{,-},{,},{-,}},escape ...

  5. Problem C HDU 5224

    Description There is a piece of paper in front of Tom, its length and width are integer. Tom knows t ...

  6. JavaScript编程异步助手:Promise

    异步模式在Web编程中变得越来越重要,对于Web主流语言JavaScript来说,这种模式实现起来不是很利索,为此,许多JavaScript库(比如 jQuery和Dojo.AngularJS)添加了 ...

  7. 【转】Centos系统文件与用户权限分配详解ftp,nginx,php

    linux系统中权限是非常完善的一个功能了,我们如果设置不正确文件就无法使用了,像我们以一般情况需要把文件权限设置为777或644了,对于用户权 限就更加了,像素ftp,nginx,php这些我们都可 ...

  8. error: unknown field 'ioctl' specified in initializer

    error message: 原因: 从2.6.36开始,file_operations结构发生了重大变化 具体看  xx../include/linux/fs.h定义: 取消了原先的 int (*i ...

  9. Ubuntu 13.04设置root用户

    1 .设置root用户密码:passwd root 输入密码 2 .编辑lightdm.conf gedit /etc/lightdm/lightdm.conf 最后加: greeter-show-m ...

  10. 转:115个Java面试题和答案——终极列表(上)

    转自:http://www.importnew.com/10980.html 本文我们将要讨论Java面试中的各种不同类型的面试题,它们可以让雇主测试应聘者的Java和通用的面向对象编程的能力.下面的 ...