ASE又走到了关键的一步  要生成能决定是否有差异表达的table.

准备借鉴一下cuffdiff和edgeR 的结果

cuffdiff对差异表达基因的描述:

一共十四列:

第一列, test_id

a unique identifer describing the transcript, gene, primary transcript, or CDS being tested.

eg XLOC_000003

第二列,gene_id

eg XLOC_000003

第三列, gene

第四列, locus

genomic coordinates for easy browsing to the genes or transcripts being tested.

eg contig_23646:3511-3922

第五列, sample1

label (or number if no labels provided) of the first sample being tested

eg Sample_E

第六列, sample2

label (or number if no labels provided) of the second sample being tested

eg Sample_FHM

第七列, status

can be one of OK(test successful), NOTEST(not enough alignments for testing), LOWDATA(too many fragments in locus), or FAIL, when an ill-conditioned covariance matrix or other numerical exception prevents testing

eg OK

第八列 value_1

FPKM of the gene in sample 1

eg 339.567

第九列 value_2

FPKM of the gene in sample 2

eg 465.939

第十列 log2(fold change)

the (base 2 ) log of the fold change 1/2

eg 0.456447

第十一列 test stat

the value of the test statistic used to compute significance of the observed change in FPKM

不懂什么意思 估计要去翻统计书的节奏了

eg 0.361712

第十二列 p_value

the uncorrected p-value of the test statistic

eg 0.4849

第十三列 q_value

the FDR-adjusted p-value of the test statistic

eg 0.756741

第十四列 significant

can be either 'yes' or 'no' , depending on whether p is greater than the FDR after Benjamini-Hochberg correction for multiple-testing

eg no

The FPKM value represents the concentration of a transcript in your samples, normalized for observed read counts and gene length. Thus fields 7,8 represent measurements for your samples and field 9 is simply a ratio of the two. You might look up FPKM or RPKM values if you're unsure what they represent. Fields 11 and 12 are p-value and q-value. These are values associated with the measured variation or uncertainty when you make repeated measurements of something. You should look up what a p-value and an "adjusted p-value" are (the adjusted one is important for you to understand if you're going to do any genomic data analysis). The 13th field is simply a flag based on whether the value in field 11 or 12 is less than 0.05 (I forget which one, but you could figure it out by exploring your data).

edge R 结果对差异表达基因的描述:

Differential expression analysis of RNA-seq and digital gene expression profiles with biological replication.  Uses empirical Bayes estimation and exact tests based on the negative binomial distribution.  Also useful for differential signal analysis with other types of genome-scale count data.(貌似两者采用的分布模型是不一样的哦~~)

by freemao

FAFU

free_mao@qq.com

cuffdiff 和 edgeR 对差异表达基因的描述的更多相关文章

  1. RNA-seq差异表达基因分析之TopHat篇

    RNA-seq差异表达基因分析之TopHat篇 发表于2012 年 10 月 23 日 TopHat是基于Bowtie的将RNA-Seq数据mapping到参考基因组上,从而鉴定可变剪切(exon-e ...

  2. 使用GEO数据库来筛选差异表达基因,KOBAS进行KEGG注释分析

    前言 本文主要演示GEO数据库的一些工具,使用的数据是2015年在Nature Communications上发表的文章Regulation of autophagy and the ubiquiti ...

  3. 使用Trinity拼接以及分析差异表达一个小例子

    使用Trinity拼接以及分析差异表达一个小例子  2017-06-12 09:42:47     293     0     0 Trinity 将测序数据分为许多独立的de Brujin grap ...

  4. 使用limma、Glimma和edgeR,RNA-seq数据分析易如反掌

    使用limma.Glimma和edgeR,RNA-seq数据分析易如反掌 Charity Law1, Monther Alhamdoosh2, Shian Su3, Xueyi Dong3, Luyi ...

  5. Differential expression analysis for paired RNA-seq data 成对RNA-seq数据的差异表达分析

    Differential expression analysis for paired RNA-seq data 抽象背景:RNA-Seq技术通过产生序列读数并在不同生物条件下计数其频率来测量转录本丰 ...

  6. RNA-Seq differential expression analysis: An extended review and a software tool RNA-Seq差异表达分析: 扩展评论和软件工具

    RNA-Seq differential expression analysis: An extended review and a software tool   RNA-Seq差异表达分析: 扩展 ...

  7. 差异基因分析:fold change(差异倍数), P-value(差异的显著性)

    在做基因表达分析时必然会要做差异分析(DE) DE的方法主要有两种: Fold change t-test fold change的意思是样本质检表达量的差异倍数,log2 fold change的意 ...

  8. edgeR使用学习【转载】

    转自:http://yangl.net/2016/09/27/edger_usage/ 1.Quick start 2. 利用edgeR分析RNA-seq鉴别差异表达基因: #加载软件包 librar ...

  9. Sensitivity, specificity, and reproducibility of RNA-Seq differential expression calls RNA-Seq差异表达调用的灵敏度 特异性 重复性

    Sensitivity, specificity, and reproducibility of RNA-Seq differential expression calls RNA-Seq差异表达调用 ...

随机推荐

  1. CSS从今以后不用发愁

    Bootstrap 简洁.直观.强悍的前端开发框架,让web开发更迅速.简单. Bootstrap3中文文档 Bootstrap2中文文档 http://www.bootcss.com/

  2. ubnutu安装sougou 输入法

    先安百度经验安装fcitx 1.首先下载sogoupinyin_2.0.0.0068_amd64.deb,点击安装后,会通过ubuntu软件中心安装,安装玩成后,任然是无法使用.然后: 2.然后执行下 ...

  3. Deep Learning 初识

    实际生活中,人们为了解决一个问题,如对象的分类(对象可是是文档.图像等),首先必须做的事情是如何来表达一个对象,即必须抽取一些特征来表示一个对象,如文本的处理中,常常用词**来表示一个文档,或把文档表 ...

  4. [开发笔记]-火狐的event和jquery1.9.1.min的问题

    一:火狐不兼容window.event.keyCode问题 火狐的event是以参数形式传入的 function onlychinese(event) { event = event || windo ...

  5. 【第53套模拟题】【递推】【RMQ】【二进制】【分块】

    题目:(开始自己描述题目了...) 第一题大意: 求1~n的所有排列中逆序对为k个的方案数,输出方案数%10000,n<=1000. 解:这道题一个递推,因为我基本上没怎么自己做过递推,所以推了 ...

  6. EditorLineEnds.ttr 错误问题

    安装 Windows Write Live,在线安装,会先安装一个什么补丁,中途提示失败. 运行Delphi2007,第一次成功,第二次就是 EditorLineEnds.ttr文件错误. http: ...

  7. tomcat http 文件下载

    tomcat作为http的下载服务器,网上有很多办法 但我认为最简单的是: 1.直接把文件放在 tomcat6/webapps/ROOT 目录下, 2.然后在网址中访问: http://120.194 ...

  8. 使用rgba色实现背景色透明

    父元素css属性:background-color: #000;  background: rgba(0,0,0,.5); //现代浏览器属性,使用rgba色实现透明,对子属性不继承  filter: ...

  9. Android ScrollView与ViewPager滑动冲突

    前段时间做项目碰到在ScrollView里添加ViewPager,但是发现ViewPager的左右滑动和ScrollView的滑动冲突了,解决这个问题的方法是重写ScrollView. 代码: pub ...

  10. SWPFILE实现(增加swap空间)

    1.mkdir /var/swap chmod  700  /var/swap(可以不用设置) 2.dd if=/dev/zero of=/var/swap/file bs=1024 count=65 ...