1005: [HNOI2008]明明的烦恼

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 4175  Solved: 1660
[Submit][Status][Discuss]

Description

  自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在
任意两点间连线,可产生多少棵度数满足要求的树?

Input

  第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1

Output

  一个整数,表示不同的满足要求的树的个数,无解输出0

Sample Input

3
1
-1
-1

Sample Output

2

HINT

  两棵树分别为1-2-3;1-3-2

该题运用到了树的prufer编码的性质:
  (1)树的prufer编码的实现
        不断 删除树中度数为1的最小序号的点,并输出与其相连的节点的序号  直至树中只有两个节点
  (2)通过观察我们可以发现
        任意一棵n节点的树都可唯一的用长度为n-2的prufer编码表示
        度数为m的节点的序号在prufer编码中出现的次数为m-1
  (3)怎样将prufer编码还原为一棵树??
        从prufer编码的最前端开始扫描节点,设该节点序号为 u ,寻找不在prufer编码的最小序号且没有被标记的节点 v ,连接   u,v,并标记v,将u从prufer编码中删除。扫描下一节点。
该题需要将树转化为prufer编码:
 n为树的节点数,d[ ]为各节点的度数,m为无限制度数的节点数。
则            
所以要求在n-2大小的数组中插入tot各序号,共有种插法;
在tot各序号排列中,插第一个节点的方法有种插法;
                           插第二个节点的方法有种插法;
                                      ………
另外还有m各节点无度数限制,所以它们可任意排列在剩余的n-2-tot的空间中,排列方法总数为
 
根据乘法原理:
 
 
然后就要高精度了…..但高精度除法太麻烦了,显而易见的排列组合一定是整数,所以可以进行质因数分解,再做一下相加减。
关于n!质因数分解有两种方法,第一种暴力分解,这里着重讲第二种。
  若p为质数,则n!可分解为 一个数*,其中  <n
所以 

——转自怡红公子

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<algorithm>
using namespace std;
#define mod 1000000
int n,m,tot,cnt,len=,d[],pri[],num[],f[],ans[];
inline int read()
{
int x=,f=; char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-; ch=getchar();}
while(isdigit(ch)) {x=x*+ch-''; ch=getchar();}
return x*f;
}
void gets()//线性筛素数
{
memset(f,,sizeof(f));
for(int i=;i<=;i++)
{
if(f[i]) pri[++cnt]=i;
for(int j=;j<=cnt;j++)
{
if(pri[j]*i>)break;
f[pri[j]*i]=;
if(i%pri[j]==)break;
}
}
}
void solve(int x,int f)//暴力分解x
{
for(int i=;i<=x;i++)
{
int k=i;
for(int j=;j<=cnt;j++)
{
if(k<=) break;
while(k%pri[j]==)
{num[j]+=f; k/=pri[j];}
}
}
}
void mul(int x)//100万进制高精乘
{
for(int i=;i<=len;i++) ans[i]*=x;
for(int i=;i<=len;i++)
{
ans[i+]+=ans[i]/mod;
ans[i]%=mod;
}
while(ans[len+])
{len++; ans[len+]=ans[len]/mod; ans[len]%=mod;}
}
void print()//输出高精度数
{
for(int i=len;i;i--)
if(i==len) printf("%d",ans[i]);
else printf("%06d",ans[i]);
}
int main()
{
n=read(); ans[]=;
gets();//读素数表
if(n==) //特判
{
int x=read();
if(!x) printf("1\n");
else printf("0\n");
return ;
}
for(int i=;i<=n;i++)
{
d[i]=read();
if(!d[i]) {printf("0\n"); return ;}
if(d[i]==-) m++;
else d[i]--,tot+=d[i];
}
if(tot>n-) {printf("0\n"); return ;}
solve(n-,);
solve(n--tot,-);
for(int i=;i<=n;i++)
if(d[i]) solve(d[i],-);
for(int i=;i<=cnt;i++)
while(num[i]--)
mul(pri[i]);
for(int i=;i<=n--tot;i++)
mul(m);
print();
return ;
}

【bzoj1005】[HNOI2008]明明的烦恼的更多相关文章

  1. bzoj1005 [HNOI2008]明明的烦恼

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3032  Solved: 1209 Description ...

  2. bzoj1005: [HNOI2008]明明的烦恼(prufer+高精度)

    1005: [HNOI2008]明明的烦恼 题目:传送门 题解: 毒瘤题啊天~ 其实思考的过程还是比较简单的... 首先当然还是要了解好prufer序列的基本性质啦 那么和1211大体一致,主要还是利 ...

  3. [BZOJ1005] [HNOI2008] 明明的烦恼 (prufer编码)

    Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N ...

  4. 【prufer编码+组合数学】BZOJ1005 [HNOI2008]明明的烦恼

    Description 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Solution 这 ...

  5. BZOJ1005 HNOI2008明明的烦恼(prufer+高精度)

    每个点的度数=prufer序列中的出现次数+1,所以即每次选一些位置放上某个点,答案即一堆组合数相乘.记一下每个因子的贡献分解一下质因数高精度乘起来即可. #include<iostream&g ...

  6. BZOJ1005:[HNOI2008]明明的烦恼(组合数学,Prufer)

    Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N ...

  7. [bzoj1005][HNOI2008][明明的烦恼] (高精度+prufer定理)

    Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N ...

  8. bzoj1005: [HNOI2008]明明的烦恼 prufer序列

    https://www.lydsy.com/JudgeOnline/problem.php?id=1005 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的 ...

  9. [bzoj1005][HNOI2008]明明的烦恼-Prufer编码+高精度

    Brief Description 给出标号为1到N的点,以及某些点最终的度数,允许在 任意两点间连线,可产生多少棵度数满足要求的树? Algorithm Design 结论题. 首先可以参考这篇文章 ...

  10. [BZOJ1005][HNOI2008]明明的烦恼 数学+prufer序列+高精度

    #include<cstdio> #include<cstring> #include<algorithm> using namespace std; int N; ...

随机推荐

  1. Centos 7.1+CDH5.7.2全部署流程

    前期准备: JDK环境 版本:jdk-8u101-linux-x64.rpm 下载地址:oracle官网 mysql rpm包:http://dev.mysql.com/get/Downloads/M ...

  2. 这次一定理清晰ThinkPHP之中的模型、数据库之间命名规范

    ServiceSiteModel.class.php 这个模型操控的数据库是service_site表: <?php namespace Admin\Model; use Think\Model ...

  3. JavaWeb之 JSP:自定义标签

    当jsp的内置标签和jstl标签库内的标签都满足不了需求,这时候就需要开发者自定义标签. 自定义标签 下面我们先来开发一个自定义标签,然后再说它的原理吧! 自定义标签的开发步骤 步骤一 编写一个普通的 ...

  4. 社保系列11《ATR》

    1)  冷复位(Cold Reset) 当IC卡的电源电压和其他信号从静止状态中复苏且申请复位信号时,IC卡产生的复位. 2)  热复位(Warm Reset) 在时钟(CLK)和电源电压(VCC)处 ...

  5. Windows server 2012清除并重建SID

    首先介绍下什么是SID SID也就是安全标识符(Security Identifiers),是标识用户.组和计算机帐户的唯一的号码.在第一次创建该帐户时,将给网络上的每一个帐户发布一个唯一的 SID. ...

  6. MVC4.0网站发布和部署到IIS7.0上的方法【转:http://www.th7.cn/Program/net/201403/183756.shtml】

    最近在研究MVC4,使用vs2010,开发的站点在发布和部署到iis7上的过程中遇到了很多问题,现在将解决的过程记录下来,以便日后参考,整个过程主要以截图形式呈现 vs2010的安装和mvc4的安装不 ...

  7. Android Studio SDK 更新方法

    通常情况下,下载Android SDK需要连接谷歌的服务器进行下载,由于国内水深火热的网络,速度基本为0.好在国内也有一个更新的镜像地址.本文章介绍如何在不FQ的情况下,使用国内镜像地址,更新andr ...

  8. 为什么学习Python

    因为做iOS开发的,之前一直用OC,但是突然有一天苹果说出Swift,但是那时候的Swift真的是Bug多多,语法都不固定,所以只是大致看了看,而一年多之后,Swift已经发布2.0了,语言也相对稳定 ...

  9. scjp考试准备 - 7 - Java构造器

    题目——如下代码的执行结果: class Hello{ String title; int value; public Hello(){ title += " World!"; } ...

  10. [转]ubuntu 10.04下的配置tftp服务器

    [转]ubuntu 10.04下的配置tftp服务器 http://www.cnblogs.com/geneil/archive/2011/11/24/2261653.html 第1步:安装tftp所 ...