实战工具:python3.7+pycharm+opencv4.6
算法知识:HOG特征提取、SVM模型构建
实战目的:本次实战的目的是熟悉HOG+SVM工作流算法,初步掌握图像分类的传统算法。
实战记录:本以为在学习原理、算法应用、动手实操后会很顺利的完全自主实现行人检测项目,但实战过程却差强人意,所以结果嘛就马马虎虎了。实战过程中所爆露出的不足有以下几点:

  • 对opencv、numpy、python的基础知识掌握的不够全面、牢固;
  • 对HOG算法的输出数据形式理解不深刻;
  • 对SVM模型的相关参数、函数方法一知半解,特别是数据在svm中的作用、输出。

实战评价:虽然坎坎坷坷,但还过得去。

1. 准备工作

本次实战使用的数据是MIT行人数据库(有现成的资料,懒得收集啦),该数据库为较早公开的行人数据库,共924张行人图片(ppm格式,宽高为64x128),肩到脚的距离约80象素。该数据库只含正面和背面两个视角,无负样本,未区分训练集和测试集。Dalal等采用“HOG+SVM”,在该数据库上的检测准确率接近100%。该数据库的下载链接见这里

2. 实战代码

"""
加载并整理数据集-->图像的预处理-->图像的特征提取
-->设计分类器-->输出分类器准确率-->测试图像
"""
import cv2
import random
import glob
import numpy as np # 加载本地图像数据集,并将数据集全部添加到列表中,然后打乱数据顺序
def load_image(filename):
paths = glob.glob(filename)
persons, labels = [], []
for i in paths:
persons.append(cv2.imread(i))
labels.append(1)
random.seed(1)
random.shuffle(persons)
persons = np.array(persons)
return persons, labels # 图像预处理,将输入图像灰度化、高斯模糊
def image_preprocessing(image):
cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# image = cv2.resize(image, dsize=(32, 64))
image_preprocess = cv2.GaussianBlur(image, (3, 3), sigmaX=1, sigmaY=1)
return image_preprocess # 构建HOG检测器
def get_hog():
winSize = (64, 128)
cellSize = (8, 8)
blockSize = (16, 16)
blockStride = (16, 16)
nbins = 9
signedGradient = True
derivAperture = 1 # 默认参数
winSigma = -1. # 默认参数
histogramNormType = 0 # 默认参数
L2HysThreshold = 0.2 # 默认参数
gammaCorrection = 1 # 默认参数
nlevels = 64 # 默认参数
hog = cv2.HOGDescriptor(winSize, blockSize, blockStride, cellSize, nbins, derivAperture, winSigma,
histogramNormType, L2HysThreshold, gammaCorrection, nlevels, signedGradient)
return hog # 创建SVM模型并配置参数
def SVM_model():
model = cv2.ml.SVM_create()
model.setType(cv2.ml.SVM_ONE_CLASS)
model.setKernel(cv2.ml.SVM_POLY)
model.setC(1)
model.setNu(0.01)
model.setDegree(0.1)
model.setCoef0(0.5)
model.setGamma(0.6)
model.setTermCriteria((cv2.TERM_CRITERIA_MAX_ITER, int(1e2), 1e-5))
return model # 训练模型
def SVM_train(model, samples, responses):
model.train(samples, cv2.ml.ROW_SAMPLE, responses)
return model # 计算分类器准确率
def accuracy(model, data_train, labels_train):
retval, result = model.predict(data_train)
temp = (np.array(labels_train) == result).mean()
print(f'该模型的准确率是:{temp * 100}') # 测试分类器
def image_predict(model, data_test, samples, labels_test):
retval, result = model.predict(samples)
counter = 0
for i in (labels_test == result.ravel()):
# 测试结果与实际结果不符合仅呈现红色通道
if not i:
data_test[counter][..., :2] = 0
counter += 1
h1 = data_test[0]
for i in data_test[1:12, ...]:
h1 = np.hstack((h1, i))
h2 = data_test[12]
for i in data_test[13:, ...]:
h2 = np.hstack((h2, i))
return np.vstack((h1, h2)) if __name__ == "__main__":
print('加载图片...')
datas, labels = load_image('image\\Pedestrian detection\\per*.ppm')
temp, data_test = np.split(datas, [900]) print('数据预处理...')
datas = list(map(image_preprocessing, datas)) print('提取训练数据的HOG特征向量...')
hog = get_hog()
hog_vector = list(map(hog.compute, datas)) print('将数据集分为两部分,900张用于训练,24张用于测试...')
data_train, temp = np.split(datas, [900])
labels_train, labels_test = np.split(np.array(labels), [900])
hog_vector_train, hog_vector_test = np.split(hog_vector, [900]) print('训练SVM模型...')
model = SVM_model()
model_svm = SVM_train(model, hog_vector_train, labels_train) print('输出分类模型的准确率...')
accuracy(model_svm, hog_vector_train, labels_train) print('测试分类模型...')
result = image_predict(model_svm, data_test, hog_vector_test, labels_test) cv2.imshow('result, press the q key to exit', result)
while 1:
if cv2.waitKey() == ord('q'):
break print('测试其他图像...')
class_name = {0: "不包含行人", 1: "包含行人"}
img = cv2.imread('image\\persontrain.png')
img = cv2.resize(img, dsize=(64, 128))
img2 = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
img_preprocess = cv2.GaussianBlur(img2, (3, 3), sigmaX=1, sigmaY=1)
# vector = np.array([hog.compute(img_preprocess)])
vector = np.expand_dims(hog.compute(img_preprocess), 0)
ret = model_svm.predict(vector)[1].ravel()
print(f"图片img{class_name[int(ret)]}") cv2.imshow('img', img)
cv2.waitKey()
cv2.destroyAllWindows() '''
加载图片...
数据预处理...
提取训练数据的HOG特征向量...
将数据集分为两部分,900张用于训练,24张用于测试...
训练SVM模型...
输出分类模型的准确率...
该模型的准确率是:99.0
测试分类模型...
测试其他图像...
图片img包含行人
'''

测试图片集的结果:

测试的其他图片:

3. 项目总结

  • HOG的特征提取的是图像的特征向量,该向量用于作为svm模型train()的"samples"输入变量。当然,在测试图像使用predict()函数时输入的也是图像的特征向量---"samples"。
  • 不同的SVMType有不同的作用,主要分为分类和回归两类。其中分类可分为单分类ONE_CLASS和非单分类SVM_C_SVCNU_SVC。本项目用的是单分类类型。
  • hog.conpute(img)model.train(samples, layout, responses)model.predict(samples)的关系:
    • hog.conpute(img)提取的是单张图像的一维特征向量,如果要提取图像集的特征向量可以使用map()或者for循环。hog.conpute(img)处理后的结果一般被用于训练、测试模型。
    • model.train(samples, layout, responses),该函数的三个参数分别是训练样本集的特征向量矩阵、每个样本特征向量在矩阵的形式、标签矩阵。layout---cv2.ml.ROW_SAMPLE,表示每个训练样本是行向量;cv2.ml.COL_SAMPLE,表示每个训练样本是列向量。layout的值决定了输入的samples中每个样本特征向量在矩阵中的形式。
    • model.predict(samples)中的samples矩阵形式取决于model.train(samples, layout, responses)中layout的值。该函数的返回值有两个retvalresult,测试样本的标签值存储在result.ravel()中。

【opencv】传统图像识别:hog+svm行人识别实战的更多相关文章

  1. HOG + SVM(行人检测, opencv实现)

    HOG+SVM流程 1.提取HOG特征 灰度化 + Gamma变换(进行根号求解) 计算梯度map(计算梯度) 图像划分成小的cell,统计每个cell梯度直方图 多个cell组成一个block, 特 ...

  2. opencv hog+svm行人检测

    http://blog.csdn.net/masibuaa/article/details/16105073 http://blog.csdn.net/u011263315/article/detai ...

  3. OpenCV中基于HOG特征的行人检测

    目前基于机器学习方法的行人检测的主流特征描述子之一是HOG(Histogram of Oriented Gradient, 方向梯度直方图).HOG特征是用于目标检测的特征描述子,它通过计算和统计图像 ...

  4. HoG SVM 目标检测分析

    前一段时间开始了解HoG跟SVM行人识别,看了很多包括Dalal得前辈的文章及经验分享,对HoG理论有了些初步的认识. HoG 的全称是 Histogram of Oriented Gradient, ...

  5. OpenCV:OpenCV目标检测Hog+SWindow源代码分析

    参考文章:OpenCV中的HOG+SVM物体分类 此文主要描述出HOG分类的调用堆栈. 使用OpenCV作图像检测, 使用HOG检测过程,其中一部分源代码如下: 1.HOG 检测底层栈的检测计算代码: ...

  6. 第十八节、基于传统图像处理的目标检测与识别(HOG+SVM附代码)

    其实在深度学习中我们已经介绍了目标检测和目标识别的概念.为了照顾一些没有学过深度学习的童鞋,这里我重新说明一次:目标检测是用来确定图像上某个区域是否有我们要识别的对象,目标识别是用来判断图片上这个对象 ...

  7. Hog SVM 车辆 行人检测

    HOG SVM 车辆检测 近期需要对卡口车辆的车脸进行检测,首先选用一个常规的检测方法即是hog特征与SVM,Hog特征是由dalal在2005年提出的用于道路中行人检测的方法,并且取的了不错的识别效 ...

  8. 【目标检测】基于传统算法的目标检测方法总结概述 Viola-Jones | HOG+SVM | DPM | NMS

    "目标检测"是当前计算机视觉和机器学习领域的研究热点.从Viola-Jones Detector.DPM等冷兵器时代的智慧到当今RCNN.YOLO等深度学习土壤孕育下的GPU暴力美 ...

  9. 利用HOG+SVM实现行人检测

    利用HOG+SVM实现行人检测 很久以前做的行人检测,现在稍加温习,上传记录一下. 首先解析视频,提取视频的每一帧形成图片存到磁盘.代码如下 import os import cv2 videos_s ...

  10. 【从零学习openCV】IOS7人脸识别实战

    前言 接着上篇<IOS7下的人脸检測>,我们顺藤摸瓜的学习怎样在IOS7下用openCV的进行人脸识别,实际上非常easy,因为人脸检測部分已经完毕,剩下的无非调用openCV的方法对採集 ...

随机推荐

  1. 2022-09-05:作为国王的统治者,你有一支巫师军队听你指挥。 :给你一个下标从 0 开始的整数数组 strength , 其中 strength[i] 表示第 i 位巫师的力量值。 对于连续的一

    2022-09-05:作为国王的统治者,你有一支巫师军队听你指挥. :给你一个下标从 0 开始的整数数组 strength , 其中 strength[i] 表示第 i 位巫师的力量值. 对于连续的一 ...

  2. 2021-04-05:给两个长度分别为M和N的整型数组nums1和nums2,其中每个值都不大于9,再给定一个正数K。 你可以在nums1和nums2中挑选数字,要求一共挑选K个,并且要从左到右挑。返回所有可能的结果中,代表最大数字的结果。

    2021-04-05:给两个长度分别为M和N的整型数组nums1和nums2,其中每个值都不大于9,再给定一个正数K. 你可以在nums1和nums2中挑选数字,要求一共挑选K个,并且要从左到右挑.返 ...

  3. ITIL介绍

    摘自:金角大王 https://www.cnblogs.com/alex3714/articles/5420433.html 本节内容 浅谈ITIL CMDB介绍 Django自定义用户认证 Rest ...

  4. 开发者一定要知道的 API 管理五大趋势

    API First 大势所趋,APIaaS(API 作为服务)也将受到越来越多企业和组织的选择,研发团队对 API 研发管理工具的要求也水涨船高. API 在今天的数字化世界中扮演着至关重要的角色,随 ...

  5. Charles抓包补充解释

    配置 大佬的博客真的很详细很详细,我就不重复造轮子了,第一次直接看大佬的博客就好,这里Python爬取微信小程序(Charles) 补充解释 在这一步疑问很多,大佬说的不是很详细,就由我来补充下吧~ ...

  6. 新版本,ggplot2 v3.3.0 新特性来袭

    ggplot2 迎来了新的版本,官方宣布了一些新的特性.下面一起看看吧. 1. 轴代码重写 这有利于解决轴标签重叠的情况. 2. 新的 scale bin,它可以像使用 color, fill 一样使 ...

  7. 【技术积累】Java中的JVM【一】

    什么是JVM JVM英文全称为Java Virtual Machine,中文意为Java虚拟机.JVM是一种能够执行Java语言编写的程序的虚拟机器,它首次作为Java语言的一部分,后来又被移植到了许 ...

  8. 2023-06-09:什么是Redis事务?原理是什么?

    2023-06-09:什么是Redis事务?原理是什么? 答案2023-06-09: Redis中的事务是以一组命令的形式出现的,这些命令被认为是最小的执行单位.事务可以保证在一个单独独立的隔离操作中 ...

  9. Java NIO原理 (Selector、Channel、Buffer、零拷贝、IO多路复用)

    系列文章目录和关于我 零丶背景 最近有很多想学的,像netty的使用.原理源码,但是苦于自己对于操作系统和nio了解不多,有点无从下手,遂学习之. 一丶网络io的过程 上图粗略描述了网络io的过程,了 ...

  10. 手写数字识别系统Python+CNN卷积神经网络算法【完整代码】

    一.介绍 手写数字识别系统,使用Python语言,基于TensorFlow搭建CNN卷积神经网络算法对数据集进行训练,最后得到模型,并基于FLask搭建网页端界面,基于Pyqt5搭建桌面端可视化界面. ...