前置知识:

  • 辗转相除法
  • 欧拉函数

首先,根据辗转相除法求 \(\gcd\) 的公式,可得 \(\gcd(a+x,m)=\gcd((a+x)\mod m,m)\)。

则题目可以转化为:求有多少 \(x\) 满足 \(\gcd(x,m)=\gcd(a,m)\),设 \(\gcd(a,m)\) 等于定值 \(k\)。

等式两边同时除以 \(k\),得 \(\gcd(\dfrac{x}{k},\dfrac{m}{k})=1\)。即求与 \(\dfrac{m}{k}\) 互质的数的个数,根据欧拉函数的定义知答案为 \(\varphi(\dfrac{m}{k})\)。

code:

#include<bits/stdc++.h>
#define int long long
using namespace std;
int T,a,m;
signed main()
{
scanf("%lld",&T);
while(T--)
{
scanf("%lld%lld",&a,&m);
int n=m/__gcd(a,m);
int ans=n;
for(int i=2;i*i<=n;i++)
{
if(n%i==0) ans=ans/i*(i-1);
while(n%i==0) n/=i;
}
if(n>1) ans=ans/n*(n-1);
cout<<ans<<endl;
}
return 0;
}

CF1295D Same GCDs的更多相关文章

  1. Codeforces 1295D Same GCDs

    题目链接 link Solution 这是一道结论题,有两个做法,分别用了欧拉函数或一点点莫比乌斯反演 (这里只放欧拉函数的做法) 设\(d=gcd(m,a)\) \[gcd(\frac{a}{d}, ...

  2. Cyclic GCDs

    Cyclic GCDs 题目链接 题面描述 有\(n\)个点,每个点有权值. 现有排列\(P\),\(p_i\)表示\(i\)个点向\(p_i\)连了一条边. 显然会形成若干个简单环.每个简单环的权值 ...

  3. Educational Codeforces Round 81 (Rated for Div. 2) - D. Same GCDs(数学)

    题目链接:Same GCDs 题意:给你两个数$a$,$m(1 \leq a < m \leq 10^{10})$,求有多少个$x$满足:$0 \leq x < m$且$gcd(a,m)= ...

  4. Codeforces1295D. Same GCDs (欧拉函数)

    https://codeforces.com/contest/1295/problem/D 设gcd(a,m)= n,那么找gcd(a +x ,m)= n个数,其实就等于找gcd((a+x)/n,m/ ...

  5. UI数据库

    一.数据库 SQL: SQL是Structured Query Language(结构化查询语言)的缩写.SQL是专为数据库而建立的操作命令集, 是一种功能齐全的数据库语言. 二.数据库管理系统 数据 ...

  6. 2016 大连网赛---Different GCD Subarray Query(GCD离散+树状数组)

    题目链接 http://acm.split.hdu.edu.cn/showproblem.php?pid=5869 Problem Description This is a simple probl ...

  7. HDU 5869 Different GCD Subarray Query 离线+树状数组

    Different GCD Subarray Query Problem Description   This is a simple problem. The teacher gives Bob a ...

  8. 2016 ACM/ICPC Asia Regional Dalian Online 1002/HDU 5869

    Different GCD Subarray Query Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K ( ...

  9. HDU 5816 Hearthstone (状压DP)

    Hearthstone 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5816 Description Hearthstone is an onlin ...

  10. HDU 5810 Balls and Boxes (找规律)

    Balls and Boxes 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5810 Description Mr. Chopsticks is i ...

随机推荐

  1. 备份Ubunut已安装的软件包并在新的Ubuntu 系统上恢复

    0.查看已安装列表 dpkg -L xxxx.deb 1.备份 安装apt-clone: $sudo apt-get install apt-clone 提供一个保存备份文件的位置.我们在 /back ...

  2. Mysql基础4-数据查询

    一.DQL介绍 DQL全称:Data Query Language(数据查询语言),用来查询数据库中表的记录. 关键字:select 二.DQL语法 select 字段列表 from 表名列表 whe ...

  3. Spring的依赖注入方式(set及constructor)

    Bean的依赖注入方式: set方法注入 P命名空间注入本质也是set方法注入,但比起上面的set方法进行注入更加方便,主要体现在配置文件中,如下: 首先,引入P命名空间: xmlns:p=" ...

  4. 策略模式+Spring配置类优化多if..else思路

    图示 1. 现状 场景: 假设设备上报不同类型的消息,我们要对不同类型的消息做不同的处理.如果我们通过if..else的方式处理的话会显得比较冗余. 例如: if("alarmEvent&q ...

  5. Django:数据库驱动安装

    import pymysql pymysql.install_as_MySQLdb() 常见MySQL驱动介绍: MySQL-python:也就是MySQLdb.是对C语言操作MySQL数据库的一个简 ...

  6. 大二暑期实习记录(一):处理组件绑定数据错误(数组解构,map()方法)

    好家伙,搬砖   今天在做组件迁移(从一个旧平台迁移到一个新平台)的时候,发现了一些小小的问题: 1.错误描述: 在穿梭框组件中,使用"节点配置"方法添加数据的时候,左测数据选择框 ...

  7. 谈谈 Kafka 的幂等性 Producer

    使用消息队列,我们肯定希望不丢消息,也就是消息队列组件,需要保证消息的可靠交付.消息交付的可靠性保障,有以下三种承诺: 最多一次(at most once):消息可能会丢失,但绝不会被重复发送. 至少 ...

  8. 青少年CTF平台-Web-Robots

    题目信息 题目名称:Robots 题目描述:昨天十三年社团讲课,讲了Robots.txt的作用,小刚上课没有认真听课正在着急,你能不能帮帮忙? 题目难度:一颗星 解题过程 访问题目链接 在这里插入图片 ...

  9. 《SQL与数据库基础》08. 多表查询

    目录 多表查询 多表关系 一对多 多对多 一对一 多表查询概述 分类 内连接 外连接 自连接 联合查询 子查询 分类 标量子查询 列子查询 行子查询 表子查询 案例 本文以 MySQL 为例 多表查询 ...

  10. Deep Transfer Learning综述阅读笔记

    这是一篇linkedin发表的深度迁移学习综述, 里面讲了一些对于search/recommend system中的迁移学习应用. 有不少指导性的方法, 看完后摘录出来 对于ranking方向的TL, ...