本文主要内容源于:

https://www.mindspore.cn/tutorial/training/zh-CN/master/use/load_model_for_inference_and_transfer.html#id1

======================================================================

本地加载模型

用于推理验证

针对仅推理场景可以使用load_checkpoint把参数直接加载到网络中,以便进行后续的推理验证。

示例代码如下:

resnet = ResNet50()
load_checkpoint("resnet50-2_32.ckpt", net=resnet)
dateset_eval = create_dataset(os.path.join(mnist_path, "test"), 32, 1) # define the test dataset
loss = CrossEntropyLoss()
model = Model(resnet, loss, metrics={"accuracy"})
acc = model.eval(dataset_eval)
  • load_checkpoint方法会把参数文件中的网络参数加载到模型中。加载后,网络中的参数就是CheckPoint保存的。

  • eval方法会验证训练后模型的精度。

用于迁移学习

针对任务中断再训练及微调(Fine Tune)场景,可以加载网络参数和优化器参数到模型中。

示例代码如下:

# return a parameter dict for model
param_dict = load_checkpoint("resnet50-2_32.ckpt")
resnet = ResNet50()
opt = Momentum(resnet.trainable_params(), 0.01, 0.9)
# load the parameter into net
load_param_into_net(resnet, param_dict)
# load the parameter into optimizer
load_param_into_net(opt, param_dict)
loss = SoftmaxCrossEntropyWithLogits()
model = Model(resnet, loss, opt)
model.train(epoch, dataset)
  • load_checkpoint方法会返回一个参数字典。

  • load_param_into_net会把参数字典中相应的参数加载到网络或优化器中。

================================================================

由上面内容可以知道,以下两个函数:

load_checkpoint

load_param_into_net

可以把保存为ckpt文件中的参数重新加载到网络和优化器中。

给出demo,  数据文件下载参考前文:

模型参数 和 优化器参数的保存:

#!/usr/bin python
# encoding:UTF-8 """" 对输入的超参数进行处理 """
import os
import argparse """ 设置运行的背景context """
from mindspore import context """ 对数据集进行预处理 """
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
from mindspore.dataset.vision import Inter
from mindspore import dtype as mstype """ 构建神经网络 """
import mindspore.nn as nn
from mindspore.common.initializer import Normal """ 训练时对模型参数的保存 """
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig """ 导入模型训练需要的库 """
from mindspore.nn import Accuracy
from mindspore.train.callback import LossMonitor
from mindspore import Model import os
os.system('rm -f *.ckpt *.meta') parser = argparse.ArgumentParser(description='MindSpore LeNet Example')
parser.add_argument('--device_target', type=str, default="CPU", choices=['Ascend', 'GPU', 'CPU']) args = parser.parse_known_args()[0] # 为mindspore设置运行背景context
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
# 定义数据集
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081 # 定义所需要操作的map映射
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32) # 使用map映射函数,将数据操作应用到数据集
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # 进行shuffle、batch、repeat操作
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds class LeNet5(nn.Cell):
"""
Lenet网络结构
""" def __init__(self, num_class=10, num_channel=1):
super(LeNet5, self).__init__()
# 定义所需要的运算
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten() def construct(self, x):
# 使用定义好的运算构建前向网络
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x # 实例化网络
net = LeNet5() # 定义损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') # 定义优化器
net_opt = nn.Momentum(net.trainable_params(), learning_rate=0.01, momentum=0.9) # 设置模型保存参数
# 每125steps保存一次模型参数,最多保留15个文件
config_ck = CheckpointConfig(save_checkpoint_steps=125, keep_checkpoint_max=15)
# 应用模型保存参数
ckpoint = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck) def train_net(args, model, epoch_size, data_path, repeat_size, ckpoint_cb, sink_mode):
"""定义训练的方法"""
# 加载训练数据集
ds_train = create_dataset(os.path.join(data_path, "train"), 32, repeat_size)
model.train(epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor(125)], dataset_sink_mode=sink_mode) def test_net(network, model, data_path):
"""定义验证的方法"""
ds_eval = create_dataset(os.path.join(data_path, "test"))
acc = model.eval(ds_eval, dataset_sink_mode=False)
print("{}".format(acc)) mnist_path = "./datasets/MNIST_Data"
train_epoch = 1
dataset_size = 1
model = Model(net, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) train_net(args, model, train_epoch, mnist_path, dataset_size, ckpoint, False)
test_net(net, model, mnist_path)

生成的参数文件:

其中, ckpt 类型的文件保存的是 网络参数 和 优化器参数, 而 .meta 文件保存的是计算图的编译后的文件,不过  meta 文件具体怎么用这里还是不了解的,具体深入关注可以参考帖子:

https://bbs.huaweicloud.com/forum/forum.php?mod=viewthread&tid=138966&page=1#pid1240965

网络优化器初始化后(不载入备份的网络参数 和 优化器参数情况下),  打印优化器的最后一个参数, moments.fc3.bias  :

import os
import numpy as np """ 构建神经网络 """
import mindspore.nn as nn
from mindspore.common.initializer import Normal
from mindspore import Tensor # 导入模型参数
from mindspore.train.serialization import load_checkpoint, load_param_into_net """ 对数据集进行预处理 """
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
from mindspore.dataset.vision import Inter
from mindspore import dtype as mstype """ 导入模型训练需要的库 """
from mindspore.nn import Accuracy
from mindspore import Model
from mindspore import context context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU') def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
# 定义数据集
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081 # 定义所需要操作的map映射
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32) # 使用map映射函数,将数据操作应用到数据集
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # 进行shuffle、batch、repeat操作
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds class LeNet5(nn.Cell):
"""
Lenet网络结构
"""
def __init__(self, num_class=10, num_channel=1):
super(LeNet5, self).__init__()
# 定义所需要的运算
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten() def construct(self, x):
# 使用定义好的运算构建前向网络
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x # 实例化网络
net = LeNet5()
# 定义损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
# 定义优化器
net_opt = nn.Momentum(net.trainable_params(), learning_rate=0.01, momentum=0.9)
# 构建模型
model = Model(net, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) # 加载已经保存的用于测试的模型
param_dict = load_checkpoint("checkpoint_lenet-1_1875.ckpt")
# 加载参数到网络中
load_param_into_net(net, param_dict)
# 加载参数到优化器中
#load_param_into_net(net_opt, param_dict) _batch_size = 8
# 定义测试数据集,batch_size设置为1,则取出一张图片
mnist_path = "./datasets/MNIST_Data"
ds_test = create_dataset(os.path.join(mnist_path, "test"), batch_size=_batch_size)
print(model.eval(ds_test)) print(type(net.parameters_and_names()))
for i, j in net_opt.parameters_and_names():
print(i)
if i == "moments.fc3.bias":
print(Tensor(j))

运行结果:

WARNING: 'ControlDepend' is deprecated from version 1.1 and will be removed in a future version, use 'Depend' instead.
[WARNING] ME(13133:139644169384064,MainProcess):2021-07-12-03:29:50.183.802 [mindspore/ops/operations/array_ops.py:2302] WARN_DEPRECATED: The usage of Pack is deprecated. Please use Stack.
{'Accuracy': 0.9594}
<class 'generator'>
learning_rate
conv1.weight
conv2.weight
fc1.weight
fc1.bias
fc2.weight
fc2.bias
fc3.weight
fc3.bias
momentum
moments.conv1.weight
moments.conv2.weight
moments.fc1.weight
moments.fc1.bias
moments.fc2.weight
moments.fc2.bias
moments.fc3.weight
moments.fc3.bias
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

可以看到,优化器的最后一个参数为全0, 那么载入备份的参数后呢:

import os
import numpy as np """ 构建神经网络 """
import mindspore.nn as nn
from mindspore.common.initializer import Normal
from mindspore import Tensor # 导入模型参数
from mindspore.train.serialization import load_checkpoint, load_param_into_net """ 对数据集进行预处理 """
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
from mindspore.dataset.vision import Inter
from mindspore import dtype as mstype """ 导入模型训练需要的库 """
from mindspore.nn import Accuracy
from mindspore import Model
from mindspore import context context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU') def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
# 定义数据集
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081 # 定义所需要操作的map映射
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32) # 使用map映射函数,将数据操作应用到数据集
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # 进行shuffle、batch、repeat操作
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds class LeNet5(nn.Cell):
"""
Lenet网络结构
"""
def __init__(self, num_class=10, num_channel=1):
super(LeNet5, self).__init__()
# 定义所需要的运算
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten() def construct(self, x):
# 使用定义好的运算构建前向网络
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x # 实例化网络
net = LeNet5()
# 定义损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
# 定义优化器
net_opt = nn.Momentum(net.trainable_params(), learning_rate=0.01, momentum=0.9)
# 构建模型
model = Model(net, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) # 加载已经保存的用于测试的模型
param_dict = load_checkpoint("checkpoint_lenet-1_1875.ckpt")
# 加载参数到网络中
load_param_into_net(net, param_dict)
# 加载参数到优化器中
load_param_into_net(net_opt, param_dict) _batch_size = 8
# 定义测试数据集,batch_size设置为1,则取出一张图片
mnist_path = "./datasets/MNIST_Data"
ds_test = create_dataset(os.path.join(mnist_path, "test"), batch_size=_batch_size)
print(model.eval(ds_test)) print(type(net.parameters_and_names()))
for i, j in net_opt.parameters_and_names():
print(i)
if i == "moments.fc3.bias":
print(Tensor(j))

运行结果:

WARNING: 'ControlDepend' is deprecated from version 1.1 and will be removed in a future version, use 'Depend' instead.
[WARNING] ME(13292:140444628824192,MainProcess):2021-07-12-03:31:50.471.228 [mindspore/ops/operations/array_ops.py:2302] WARN_DEPRECATED: The usage of Pack is deprecated. Please use Stack.
{'Accuracy': 0.9594}
<class 'generator'>
learning_rate
conv1.weight
conv2.weight
fc1.weight
fc1.bias
fc2.weight
fc2.bias
fc3.weight
fc3.bias
momentum
moments.conv1.weight
moments.conv2.weight
moments.fc1.weight
moments.fc1.bias
moments.fc2.weight
moments.fc2.bias
moments.fc3.weight
moments.fc3.bias
[-0.00917954  0.00276246 -0.01406308  0.01492264 -0.01100682 -0.0692124
  0.02251344  0.00341095  0.03600671  0.02384563]

可以看到,载入备份的优化器参数后,打印结果与之前不同了。

MindSpore 计算框架 模型参数 和 优化器 参数的重新载入的更多相关文章

  1. PyTorch官方中文文档:torch.optim 优化器参数

    内容预览: step(closure) 进行单次优化 (参数更新). 参数: closure (callable) –...~ 参数: params (iterable) – 待优化参数的iterab ...

  2. Oracle 查看相关优化器参数

    select x.ksppinm name, y.ksppstvl value, y.ksppstdf isdefault, decode(bitand(y.ksppstvf, 7), 1, 'MOD ...

  3. keras RAdam优化器使用教程, keras加载模型包含自定义优化器报错 如何解决?

    本文首发于个人博客https://kezunlin.me/post/c691f02b/,欢迎阅读最新内容! python keras RAdam tutorial and load custom op ...

  4. [源码解析] PyTorch分布式优化器(1)----基石篇

    [源码解析] PyTorch分布式优化器(1)----基石篇 目录 [源码解析] PyTorch分布式优化器(1)----基石篇 0x00 摘要 0x01 从问题出发 1.1 示例 1.2 问题点 0 ...

  5. [源码解析] PyTorch分布式优化器(2)----数据并行优化器

    [源码解析] PyTorch分布式优化器(2)----数据并行优化器 目录 [源码解析] PyTorch分布式优化器(2)----数据并行优化器 0x00 摘要 0x01 前文回顾 0x02 DP 之 ...

  6. optimizer_mode优化器模式

    查询优化器最主要的工作就是接受输入的SQL以及各种环境参数.配置参数,生成合适的SQL执行计划(Execution Plan). Query Optimizer一共经历了两个历史阶段: RBO: Ru ...

  7. Python带参数的装饰器

    在装饰器函数里传入参数 # -*- coding: utf-8 -*- # 2017/12/2 21:38 # 这不是什么黑魔法,你只需要让包装器传递参数: def a_decorator_passi ...

  8. MindSpore 高阶优化器

    MindSpore 高阶优化器 MindSpore自研优化器THOR(Trace-based Hardware-driven layer-ORiented Natural Gradient Desce ...

  9. [源码解析] PyTorch分布式优化器(3)---- 模型并行

    [源码解析] PyTorch分布式优化器(3)---- 模型并行 目录 [源码解析] PyTorch分布式优化器(3)---- 模型并行 0x00 摘要 0x01 前文回顾 0x02 单机模型 2.1 ...

  10. QuantLib 金融计算——数学工具之优化器

    目录 QuantLib 金融计算--数学工具之优化器 概述 Optimizer Constraint OptimizationMethod EndCriteria 示例 Rosenbrock 问题 校 ...

随机推荐

  1. 安卓app 地铁最短路径查询 完成

    我通过三个函数 完成了这个功能 首先  创建哈希表 根据起始站名 终点站名 然后 根据哈希表 建立起 邻接表' 最后 根据迪杰斯特拉算法 完成这个功能 /** * function:起终查询 */ / ...

  2. redis简单应用demo - 订单号自增长的思路:业务编码+地区+自增数值

    redis简单应用demo1.字符串127.0.0.1:6379> set hello toneyOK127.0.0.1:6379> type hellostring127.0.0.1:6 ...

  3. 关于Compilation failed: internal java compiler error的解决方法(Idea)

    关于Compilation failed: internal java compiler error的解决方法(Idea) idea编译项目时出现java: Compilation failed: i ...

  4. FolkMQ 1.6.0(纯血国产,适合信创)

    FolkMQ 是个"新式"的消息中间件.强调:"简而强".可内嵌,可单机,可集群(部署包为 9Mb). 功能简表 角色 功能 生产者(客户端) 发布普通消息.Q ...

  5. Maven配置阿里云镜像和本地仓库路径

    配置阿里云镜像仓库 在settings > mirrors标签下添加以下内容 <!-- Aliyun Mirror --> <mirror> <id>alim ...

  6. SQLite vs MySQL vs PostgreSQL对比总结

    开发业务系统时,是绕不开RDBMS(关系型数据库)的.虽然现在诞生了各种NoSQL的数据库,RDBMS在业务系统中的严谨和优势依然无法取代. 近几年大大小小的项目中,常用的三种RDBMS(SQLite ...

  7. 阿里云Centos7 安装mysql5.7 报错:./mysqld: error while loading shared libraries: libaio.so.1: cannot open shared object file: No such file or directory

    在阿里云服务器Centos7中安装mysql5.7,解压数据库初始化后,报错 ./mysqld: error while loading shared libraries: libaio.so.1: ...

  8. Aspose 导出Excel时 隐藏指定列

    Worksheet ws = wb.Worksheets[0]; ws.Cells.HideColumn(0); //隐藏Excel第一列

  9. [Java SE] Java-文件系统-常用文件路径的获取方法

    1 获取相对路径 /** * 获取相对路径 [推荐] * 使用Java提供的Path类和Paths类来获取相对路径. * 例如,假设有两个路径a和b,我们可以使用Path类的relativize()方 ...

  10. 解决php提示Maximum execution time of 30 seconds exceeded错误

    如何解决错误? 基本上,有3种方法可以处理此错误: 修改php配置文件php.ini文件 使用 ini_set() 函数 使用set_time_limit()函数 1)修改php配置文件php.ini ...