Divisors of the Divisors of an Integer

题意:定义d[x]为x的因子个数,sndd[y]为y的因子的因子个数和。

思路:任意一个大于一的数,都可以分解为若干个质数的乘积。所以,这个问题可以转换成一个有关质数的问题。

如果x是一个质数,那么d[x^u] = u + 1。

分类加法,分步乘法。首先,每一步先选出来一个质数进行操作,对于每一个质数,需要将多种可能情况进行加和。

#include<bits/stdc++.h>
#define int long long
using namespace std; const int N = 1e6 + 10;
const int mod = 1e7 + 7;
int n, t, prime[N], tot;
bool mark[N];
typedef pair<int,int> pii;
vector<pii> vet; void get_prime(){
for(int i = 2; i <= 1e6; i++){
if(!mark[i]){
prime[++tot] = i;
mark[i] = 1;
}
for(int j = 1; j <= tot; j ++){
if(i * prime[j] > 1e6) break;
mark[i * prime[j]] = 1;
if(i % prime[j] == 0) break;
}
}
} //每个因数对答案的贡献是可以的算出来的 signed main(){
get_prime();
while(cin >> n){
//cin >> n;
if(n == 0) break;
vet.clear();
for(int i = 1; i <= tot; i ++){
//int x = n / prime[i];
int y = n, x = 0;
while(y){
x += y/prime[i];
y = y / prime[i];
}
if(x >= 1){
vet.push_back({prime[i], x});
}
}
int ans = 1;
for(int i = 0; i < vet.size(); i++){
int u = 0;
int x = vet[i].first, y = vet[i].second;
ans = ans * ((y + 1) + ((y + 1) * y / 2)%mod)% mod;
}
cout << ans << endl;
}
return 0;
}

Divisors of the Divisors of an Integer题解的更多相关文章

  1. 2018-2019 ACM-ICPC, Asia Dhaka Regional Contest C.Divisors of the Divisors of An Integer (数论)

    题意:求\(n!\)的每个因子的因子数. 题解:我们可以对\(n!\)进行质因数分解,这里可以直接用推论快速求出:https://5ab-juruo.blog.luogu.org/solution-p ...

  2. AtCoder Beginner Contest 115 题解

    题目链接:https://abc115.contest.atcoder.jp/ A Christmas Eve Eve Eve 题目: Time limit : 2sec / Memory limit ...

  3. LeetCode Perfect Number

    原题链接在这里:https://leetcode.com/problems/perfect-number/#/description 题目: We define the Perfect Number ...

  4. 【LeetCode】数学(共106题)

    [2]Add Two Numbers (2018年12月23日,review) 链表的高精度加法. 题解:链表专题:https://www.cnblogs.com/zhangwanying/p/979 ...

  5. 【leetcode 29】 两数相除(中等)

    题目描述 给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor 得到的商. 整数 ...

  6. C Primer Plus(第五版)7

    第 7 章 C 控制语句:分支和跳转 在本章中你将学习下列内容: · 关键字:if(如果),else(否则),switch(切换),continue(继续),break(中断), case(情况),d ...

  7. [leetcode-507-Perfect Number]

    We define the Perfect Number is a positive integer that is equal to the sum of all its positive divi ...

  8. 507. Perfect Number

    We define the Perfect Number is a positive integer that is equal to the sum of all its positive divi ...

  9. [LeetCode] Perfect Number 完美数字

    We define the Perfect Number is a positive integer that is equal to the sum of all its positive divi ...

  10. [Swift]LeetCode507. 完美数 | Perfect Number

    We define the Perfect Number is a positive integer that is equal to the sum of all its positive divi ...

随机推荐

  1. [转帖]事务上的等待事件 —— enq: TM - contention

    执行DML期间,为防止对与DML相关的对象进行修改,执行DML的进程必须对该表获得TM锁.若在获得TM锁的过程中发生争用,则等待enq: HW - contention 事件. SQL> sel ...

  2. [转帖]带你重走 TiDB TPS 提升 1000 倍的性能优化之旅

    https://tidb.net/blog/29074d86#TiDB%20%E6%80%A7%E8%83%BD%E5%92%8C%E7%A8%B3%E5%AE%9A%E6%80%A7%E7%9A%8 ...

  3. [转帖]Linux—编写shell脚本操作数据库执行sql

    Linux-编写shell脚本操作数据库执行sql Hughman关注IP属地: 北京 0.0762020.03.20 09:02:13字数 295阅读 1,036 修改数据库数据   在升级应用时, ...

  4. 跨主机Docker容器通信的学习

    背景 骨折在家找自己的人比较少. 又因为出不去也没法做运动,就不如将之前没学习深入的地方学习下 先是进行Docker 搭建 redis cluster的处理. 当时发现必须使用 --net=host进 ...

  5. [读书笔记]SQLSERVER企业级平台管理实践读书笔记--从等待事件判断性能瓶颈

    用到的系统试图主要有: select * from sys.dm_os_wait_statsselect * from sys.sysprocessesselect * from sys.dm_exe ...

  6. 在k8s中的控制器和部署服务-ReplicationController和ReplicaSet

    pod 代表了 k8s 中的基本部署单元,但是在实际应用场景中,服务不可能是单个pod运行的,否则会出现"单点".在 k8s 中对 pod 的托管部署,专门抽象成了单独的资源.其中 ...

  7. 开发QQ官方机器人

    QQ 频道机器人开发简明教程 1. 简介 QQ 频道机器人是一种可以在 QQ 频道中与用户进行互动的服务.这个教程旨在帮助新手学习如何使用 Python 的官方SDK,快速实现一些基本的机器人功能. ...

  8. C# 中判断List集合是否为空

    判断List集合是否为空,可以使用Count和Any,下面是其使用场景(别人总结)

  9. postman测试Integer[]数组

    背景说明:在做批量删除列表数据的时候,前端发送数组格式给后端,后端使用数组格式(Integer[] ids)接受,需要使用postman测试结果. @ApiOperation("管理系统-删 ...

  10. 来啦!2020 Java开源项目权威排名解读:Spring Boot排名稳定、Shiro未上榜

    这篇文章对于我们做技术选型以及技术学习都有极强的指导性作用,建议收藏! 原创不易,若有帮助,欢迎点赞! 推荐: 接近100K star 的Java学习/面试指南 Github 95k+点赞的Java面 ...