CF671D Roads in Yusland 题解
题目要求我们求出选出若干条路径并最小化花费,如果这是在链上,我们可以考虑直接枚举每条路径的右端点 dp,那树呢?把路径剖分整个覆盖的集合就不一定连续了,没法 dp,况且题目里给了很强的条件:路径一定是从孩子到祖先,硬转链用不上这个性质,貌似不太对。
上述思考启发我们利用树的形态设计算法,而利用节点的子树分割成子问题是一个通常的思考方向,我们从此处入手,考虑如果要覆盖一棵树需要什么条件,首先,根节点的每棵子树必须被覆盖,并且还要有一条能向外延伸的边以覆盖连接根节点和子树根节点的边。
考虑设计 dp 以维护上述条件,为了维护前者,我们可以钦定每个节点的状态所选择的解中子树全部被覆盖;而后者,由于子树内所有节点的祖先并都在固定的一条链上,我们可以添加一维确定向外延伸的长度。具体地,我们设 \(f_{u,j}\) 表示完全覆盖节点 \(u\) 的子树且向外延伸了 \(j\) 个长度的最小花费。
转移是显然的,设 \(g_u=\min f_{u,j}\),则 \(f_{u,j}=\min \{f_{v,j}\}+\sum_{k\in son(v)} g_k -g_v\)。这个做法是 \(O(n^2)\) 的。
由于转移比较简单,我们考虑能不能用数据结构维护第二维,需要支持合并取 min 和全局加,用线段树合并就可以维护,时间和空间复杂度都是 \(O((n+m)\log n)\) 的。
但是本题空间复杂度限制比较紧,注意到线段树中有很多没有用的节点,并且不能动态调整空间。考虑换成平衡树,每个节点储存二元组 \((j,cost)\) 表示向上延伸 \(j\) 距离花费 \(cost\),全局加可以直接打标记,合并可以直接启发式合并,全部插到里面就行,注意为了保证复杂度,如果有向上延伸相同距离的状态我们只能保留一个。
问题是取 min,由于刚才我们已经要求平衡树按第一维排序,我们不好直接求全局 min,但是注意到如果一个状态相比于另一个能覆盖更前面的边但是花费也更小,我们不必保留另一个状态,因此在满足一维排好序的情况下另一位也排好了。平衡树可以用 set,时间复杂度 \(O((n+m)\log^2 n)\),但是空间复杂度变成了线性,可以通过。
// Problem: Roads in Yusland
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/CF671D
// Memory Limit: 250 MB
// Time Limit: 4000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
#include<set>
#define ll long long
#define N 300005
using namespace std;
ll read(){
ll x=0;char ch=getchar();
while(ch<'0' || ch>'9') ch=getchar();
while(ch>='0' && ch<='9'){
x=(x<<1)+(x<<3)+(ch^48);
ch=getchar();
}
return x;
}
ll e,head[N<<1],nex[N<<1],to[N<<1],dep[N],tag[N],rt[N];
struct Node{
ll num,val;
bool operator <(const Node &x)const{
return num>x.num;
}
};
vector<Node> E[N];
set<Node> t[N];
void add(ll u,ll v){
to[++e]=v;nex[e]=head[u];head[u]=e;
to[++e]=u;nex[e]=head[v];head[v]=e;
}
ll flag;
void insert(ll u,ll num,ll val){
if(t[u].size()==0){t[u].insert((Node){num,val});return;}
auto it=t[u].lower_bound((Node){num,val});
if(it==t[u].end() || (it->num)!=num){
if(it!=t[u].end() && it->val<=val)return;
if(it==t[u].begin()){t[u].insert((Node){num,val});return;}
auto itr=it,itl=it;
while(itl!=t[u].begin()){
itl--;if(itl->val<val){itl++;break;}
}
if(itl!=itr)t[u].erase(itl,itr);
t[u].insert((Node){num,val});return;
}
if(it->val<=val) return;
it++;auto itr=it;it--;
while(it!=t[u].begin()){
it--;if(it->val<val){it++;break;}
}
t[u].erase(it,itr);
t[u].insert((Node){num,val});
}
void dfs(ll u,ll fa){
rt[u]=u;
ll tot=0;dep[u]=dep[fa]+1;
for(ll i=head[u];i;i=nex[i]){
ll v=to[i];if(v==fa) continue;
dfs(v,u);if(flag) return;
if(t[rt[v]].size()==0){flag=1;return;}
if((t[rt[v]].begin()->num)>dep[u])t[rt[v]].erase(t[rt[v]].begin());
if(t[rt[v]].size()==0){flag=1;return;}
tot+=(t[rt[v]].begin()->val+tag[v]);tag[v]=-(t[rt[v]].begin()->val);
}
ll tmp=300001;
for(ll i=head[u];i;i=nex[i]){
ll v=to[i];if(v==fa) continue;
if(t[rt[v]].size()>t[rt[u]].size()){tmp=v;rt[u]=rt[v];tag[u]=tot+tag[v];}
}
for(ll i=head[u];i;i=nex[i]){
ll v=to[i];if(v==fa || rt[v]==rt[u]) continue;
for(auto it=t[rt[v]].begin();it!=t[rt[v]].end();it++){
insert(rt[u],it->num,it->val+tag[v]-tag[tmp]);
}
}
for(ll i=0;i<E[u].size();i++){
insert(rt[u],dep[E[u][i].num],E[u][i].val-tag[tmp]);
}
}
int main(){
ll n,m,u,v,w;n=read();m=read();
for(ll i=1;i<n;i++){u=read();v=read();add(u,v);}
for(ll i=1;i<=m;i++){
u=read();v=read();w=read();E[u].push_back((Node){v,w});
}
if(n==1){cout<<0;return 0;}
dfs(1,0);
if(flag) cout<<-1;
else cout<<(t[rt[1]].begin()->val)+tag[1];
return 0;
}
CF671D Roads in Yusland 题解的更多相关文章
- CF671D Roads in Yusland
一道很玄妙的题= = 我们考虑先考虑DP 那么有$f[x]=min(c+\sum f[y])$ $f[x]$表示覆盖x的子树和x->fa[x]的所有边最小代价 我们枚举一条边c覆盖的x-> ...
- 【CF671D】Roads in Yusland(贪心,左偏树)
[CF671D]Roads in Yusland(贪心,左偏树) 题面 洛谷 CF 题解 无解的情况随便怎么搞搞提前处理掉. 通过严密(大雾)地推导后,发现问题可以转化成这个问题: 给定一棵树,每条边 ...
- Codeforces 671 D. Roads in Yusland
题目描述 Mayor of Yusland just won the lottery and decided to spent money on something good for town. Fo ...
- [Codeforces671D]Roads in Yusland
[Codeforces671D]Roads in Yusland Tags:题解 题意 luogu 给定以1为根的一棵树,有\(m\)条直上直下的有代价的链,求选一些链把所有边覆盖的最小代价.若无解输 ...
- 【CF617D】Roads in Yusland
[CF617D]Roads in Yusland 题面 蒯的洛谷的 题解 我们现在已经转化好了题目了,戳这里 那么我们考虑怎么求这个东西,我们先判断一下是否所有的边都能被覆盖,不行的话输出\(-1\) ...
- 【CodeForces】671 D. Roads in Yusland
[题目]D. Roads in Yusland [题意]给定n个点的树,m条从下往上的链,每条链代价ci,求最少代价使得链覆盖所有边.n,m<=3*10^5,ci<=10^9,time=4 ...
- codesforces 671D Roads in Yusland
Mayor of Yusland just won the lottery and decided to spent money on something good for town. For exa ...
- 题解-Codeforces671D Roads in Yusland
Problem Codeforces-671D 题意概要:给定一棵 \(n\) 点有根树与 \(m\) 条链,链有费用,保证链端点之间为祖先关系,问至少花费多少费用才能覆盖整棵树(\(n-1\) 条边 ...
- CF671D:Roads in Yusland
n<=300000个点的树,给m<=300000条带权路径(ui,vi,保证vi是ui的祖先)求覆盖整棵树每条边的最小权和. 好题好姿势!直观的看到可以树形DP,f[i]表示把点i包括它爸 ...
- 【CF671D】 Roads in Yusland(对偶问题,左偏树)
传送门 洛谷翻译 CodeForces Solution emmm,先引入一个对偶问题的概念 \(max(c^Tx|Ax \leq b)=min(b^Ty|A^Ty \ge c)\) 考虑这个式子的现 ...
随机推荐
- List去除重复数据的五种方式
来自:CSDN,作者:多纤果冻 链接:https://blog.csdn.net/qq_37939251/article/details/90713643 以下介绍五种-不同的方法去除 Java 中A ...
- 记一次 .NET 某游戏服务后端 内存暴涨分析
一:背景 1. 讲故事 前几天有位朋友找到我,说他们公司的后端服务内存暴涨,而且CPU的一个核也被打满,让我帮忙看下怎么回事,一般来说内存暴涨的问题都比较好解决,就让朋友抓一个 dump 丢过来,接下 ...
- 零基础实现Java直播(二):实现流程
一.前提条件 在实现Java直播前,请确保: 已在项目中集成 ZEGO Express SDK,详情请参考 快速开始 - 集成. 已在 ZEGO 控制台 创建项目,并申请有效的 AppID 和 App ...
- Python开发者必读:Pip使用全攻略与最佳实践
在这篇文章中,我们将深入探讨Python的主要包管理工具--Pip.内容涵盖了Pip的基本概念.安装和配置.中国国内镜像源的使用.包管理.与虚拟环境的关系.高级用法.问题解决. 1. 引言 在现代的软 ...
- MASA Blazor中MSwitch如何实现二次确认
<MSwitch @bind-Value="switch" Readonly OnClick="OnClick"> </MSwitch> ...
- 行行AI人才直播第12期:风平智能创始人林洪祥《AI数字人的技术实践和商业探讨》
行行AI人才是博客园和顺顺智慧共同运营的AI行业人才全生命周期服务平台. 歌手孙燕姿凭借AI翻唱席卷各大视频平台.有视频博主用AI技术复活已故的奶奶,并且与之对话缅怀亲人填补遗憾.更有国外网红通过GP ...
- Sa-Token 多账号认证:同时为系统的 Admin 账号和 User 账号提供鉴权操作
Sa-Token 是一个轻量级 java 权限认证框架,主要解决登录认证.权限认证.单点登录.OAuth2.微服务网关鉴权 等一系列权限相关问题. Gitee 开源地址:https://gitee.c ...
- Socket 入坑
什么是Socket Socket(套接字)是在计算机网络中实现通信的一种机制.它提供了一种应用程序编程接口(API),允许应用程序通过网络进行数据传输和通信. 在网络通信中,Socket 可以被看作是 ...
- Unity UGUI的PhysicsRaycaster (物理射线检测)组件的介绍及使用
Unity UGUI的PhysicsRaycaster (物理射线检测)组件的介绍及使用 1. 什么是PhysicsRaycaster组件? PhysicsRaycaster是Unity UGUI中的 ...
- Unity的IUnityLinkerProcessor:深入解析与实用案例
Unity IUnityLinkerProcessor Unity IUnityLinkerProcessor是Unity引擎中的一个接口,它允许开发者在Unity项目构建时对代码进行链接处理.这个接 ...