https://blog.myhro.info/2017/01/how-fast-are-unix-domain-sockets

Jan 3, 2017 • Tiago Ilieve

Warning: this is my first post written in English, after over five years writing only in Portuguese. After reading many technical articles written in English by non-native speakers, I’ve wondered: imagine how much information I would be missing if they wrote those posts in French or Russian. Following their examples, this blog can also reach a much wider audience as well.

It probably happened more than once, when you ask your team about how a reverse proxy should talk to the application backend server. “Unix sockets. They are faster.”, they’ll say. But how much faster this communication will be? And why a Unix domain socket is faster than an IP socket when multiple processes are talking to each other in the same machine? Before answering those questions, we should figure what Unix sockets really are.

Unix sockets are a form of inter-process communication (IPC) that allows data exchange between processes in the same machine. They are special files, in the sense that they exist in a file system like a regular file (hence, have an inode and metadata like ownership and permissions associated to it), but will be read and written using recv() and send() syscalls instead of read() and write(). When binding and connecting to a Unix socket, we’ll be using file paths instead of IP addresses and ports.

In order to determine how fast a Unix socket is compared to an IP socket, two proofs of concept (POCs) will be used. They were written in Python, due to being small and easy to understand. Their implementation details will be clarified when needed.

IP POC

ip_server.py

#!/usr/bin/env python

import socket

server_addr = '127.0.0.1'
server_port = 5000 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind((server_addr, server_port))
sock.listen(0) print 'Server ready.' while True:
conn, _ = sock.accept()
conn.send('Hello there!')
conn.close()

ip_client.py

#!/usr/bin/env python

import socket
import time server_addr = '127.0.0.1'
server_port = 5000 duration = 1
end = time.time() + duration
msgs = 0 print 'Receiving messages...' while time.time() < end:
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect((server_addr, server_port))
data = sock.recv(32)
msgs += 1
sock.close() print 'Received {} messages in {} second(s).'.format(msgs, duration)

Unix domain socket POC

uds_server.py

#!/usr/bin/env python

import os
import socket server_addr = '/tmp/uds_server.sock' if os.path.exists(server_addr):
os.unlink(server_addr) sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
sock.bind(server_addr)
sock.listen(0) print 'Server ready.' while True:
conn, _ = sock.accept()
conn.send('Hello there!')
conn.close()

uds_client.py

#!/usr/bin/env python

import socket
import time server_addr = '/tmp/uds_server.sock' duration = 1
end = time.time() + duration
msgs = 0 print 'Receiving messages...' while time.time() < end:
sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
sock.connect(server_addr)
data = sock.recv(32)
msgs += 1
sock.close() print 'Received {} messages in {} second(s).'.format(msgs, duration)

As we can see by those code snippets, both implementations are close to each other as possible. The differences between them are:

  • Their address family: socket.AF_INET (IP) and socket.AF_UNIX (Unix sockets).
  • To bind a process using socket.AF_UNIX, the socket file should be removed and created again if it already exists.
  • When using socket.AF_INET, the socket.SO_REUSEADDR flag have to be set in order to avoid socket.error: [Errno 98] Address already in use errors that may occur even when the socket is properly closed. This option tells the kernel to reuse the same port if there are connections in the TIME_WAIT state.

Both POCs were executed on a Core i3 laptop running Ubuntu 16.04 (Xenial) with stock kernel. There is no output at every loop iteration to avoid the huge performance penalty of writing to a screen. Let’s take a look at their performances.

IP POC

First terminal:

$ python ip_server.py
Server ready.

Second terminal:

$ python ip_client.py
Receiving messages...
Received 10159 messages in 1 second(s).

Unix domain socket POC

First terminal:

$ python uds_server.py
Server ready.

Second terminal:

$ python uds_client.py
Receiving messages...
Received 22067 messages in 1 second(s).

The Unix socket implementation can send and receive more than twice the number of messages, over the course of a second, when compared to the IP one. During multiple runs, this proportion is consistent, varying around 10% for more or less on both of them. Now that we figured their performance differences, let’s find out why Unix sockets are so much faster.

It’s important to notice that both IP and Unix socket implementations are using TCP (socket.SOCK_STREAM), so the answer isn’t related to how TCP performs in comparison to another transport protocol like UDP, for instance (see update 1). What happens is that when Unix sockets are used, the entire IP stack from the operating system will be bypassed. There will be no headers being added, checksums being calculated (see update 2), encapsulation and decapsulation of packets being done nor routing being performed. Although those tasks are performed really fast by the OS, there is still a visible difference when doing benchmarks like this one.

There’s so much room for real-world comparisons besides this synthetic measurement demonstrated here. What will be the throughput differences when a reverse proxy like nginx is communicating to a Gunicorn backend server using IP or Unix sockets? Will it impact on latency as well? What about transfering big chunks of data, like huge binary files, instead of small messages? Can Unix sockets be used to avoid Docker network overhead when forwarding ports from the host to a container?

References:

Updates:

  1. John-Mark Gurney and Justin Cormack pointed out that SOCK_STREAM doesn’t mean TCP under Unix domain sockets. This makes sense, but I couldn’t find any reference affirming nor denying it.
  2. Justin Cormack also mentioned that there’s no checksumming on local interfaces by default. Looking at the source code of the Linux loopback driver, this seems to be present in kernel since version 2.6.12-r2.

[转帖]How fast are Unix domain sockets?的更多相关文章

  1. PHP 调用 Go 服务的正确方式 - Unix Domain Sockets

    * { color: #3e3e3e } body { font-family: "Helvetica Neue", Helvetica, "Hiragino Sans ...

  2. UNIX DOMAIN SOCKETS IN GO unix域套接字

    Unix domain sockets in Go - Golang News https://golangnews.org/2019/02/unix-domain-sockets-in-go/ pa ...

  3. Unix domain sockets

    #server: SERVER_PATH = "/tmp/python_unix_socket_server" def run_unix_domain_socket_server( ...

  4. php, hhvm与odp & Unix domain Socket方式

    接上一篇,复习一下 启动php或hhvm: php/sbin/php-fpm start hhvm/bin/hhvm_control start 启动nginx或lighttpd: webserver ...

  5. 网络协议之:socket协议详解之Unix domain Socket

    目录 简介 什么是Unix domain Socket 使用socat来创建Unix Domain Sockets 使用ss命令来查看Unix domain Socket 使用nc连接到Unix do ...

  6. 由一个简单需求到Linux环境下的syslog、unix domain socket

    本文记录了因为一个简单的日志需求,继而对linux环境下syslog.rsyslog.unix domain socket的学习.本文关注使用层面,并不涉及rsyslog的实现原理,感兴趣的读者可以参 ...

  7. libpqxx接口的在linux下的使用,解决psql:connections on Unix domain socket "/tmp/.s.PGSQL.5432"错误

    在项目中使用postgresql数据库时要求在windows和linux双平台兼容.于是在windows下使用的接口在linux下爆出异常: psql:connections on Unix doma ...

  8. Unix domain socket IPC

    UNIX Domain socket 虽然网络socket也可用于同一台主机的进程间通讯(通过lo地址127.0.0.1),但是unix domain socket用于IPC更有效率:不需要经过网络协 ...

  9. 问题解决:psql: could not connect to server: No such file or directory Is the server running locally and accepting connections on Unix domain socket "/var/run/postgresql/.s.PGSQL.5432"?

    错误提示: psql: could not connect to server: No such file or directory Is the server running locally and ...

  10. UNIX域套接字(unix domain)

    UNIX域套接字用于在同一台机器上运行的进程之间的通信. UNIX域套接字提供流和数据报两种接口. 说明:UNIX域套接字比因特网套接字效率更高.它仅赋值数据:不进行协议处理,如添加或删除网络报头.计 ...

随机推荐

  1. 人大金仓驱动包kingbasejdbc8.6.0.jar V8驱动jar包

    人大金仓驱动包kingbasejdbc8.6.0.jar V8驱动jar包 工作上要将kingbaseV8数据库整合到项目,我在官网找了半天,连个jdbc驱动包下载入口都找不到,简直就是官方文档毫无诚 ...

  2. 兼容并蓄广纳百川,Go lang1.18入门精炼教程,由白丁入鸿儒,go lang复合容器类型的声明和使用EP04

    书接上回,容器数据类型是指一种数据结构.或者抽象数据类型,其实例为其他类的对象. 或者说得更具体一点,它是以一种遵循特定访问规则的方法来存储对象. 容器的大小取决于其包含的基础数据对象(或数据元素)的 ...

  3. 解析Spring内置作用域及其在实践中的应用

    摘要:本文详细解析了Spring的内置作用域,包括Singleton.Prototype.Request.Session.Application和WebSocket作用域,并通过实例讲解了它们在实际开 ...

  4. 乐高式扩展:在Seal软件供应链防火墙中轻松集成代码规范工具

    上个月,Seal 软件供应链防火墙 v0.2(以下简称"Seal")正式发布,这一版本实现了可扩展架构,用户可以根据自身需求插件式集成原生或第三方解决方案,灵活扩展扫描能力. 在前 ...

  5. IIS 设置超时时间

    高级设置 => 限制 => 连接超时(秒),默认120秒,根据实际情况调整

  6. 不使用kvm的qemu虚拟化

    本文记录的是在某些机器上并不支持kvm虚拟化,单纯使用qemu来完成虚拟机的创建和管理. 系统版本:centos 7 qemu版本:4.2 首先说明一下qemu和kvm的关系: qemu 是一个模拟器 ...

  7. 成为一个合格程序员所必备的三种常见LeetCode排序算法

    排序算法是一种通过特定的算法因式将一组或多组数据按照既定模式进行重新排序的方法.通过排序,我们可以得到一个新的序列,该序列遵循一定的规则并展现出一定的规律.经过排序处理后的数据可以更方便地进行筛选和计 ...

  8. Educational Codeforces Round 104 (Rated for Div. 2) A-E 个人题解

    比赛链接 1487A. Arena n 个 Hero,分别有 \(a_i\) 的初始等级.每次两个 Hero 战斗时:等级相同无影响,否则等级高的英雄等级+1.直到某个英雄等级到了 \(100^{50 ...

  9. 图解 Promise 实现原理(三)—— Promise 原型方法实现

    本文首发于 vivo互联网技术 微信公众号 链接:  https://mp.weixin.qq.com/s/u8wuBwLpczkWCHx9TDt4Nw作者:Morrain Promise 是异步编程 ...

  10. Spring自带的Objects等工具类(减少繁琐代码)

    断言: AssertUtils assert 关键字在 JDK1.4 中引入,可通过 JVM 参数-enableassertions开启 SpringBoot 中提供了 Assert 断言工具类,通常 ...