Description

你被要求设计一个计算器完成以下三项任务:

  1. 给定 \(y,z,p\),计算 \(y^z \bmod p\) 的值;
  2. 给定 \(y,z,p\),计算满足 \(xy≡ z \pmod p\) 的最小非负整数;
  3. 给定 \(y,z,p\),计算满足 \(y^x ≡ z \pmod p\) 的最小非负整数。

Input

输入包含多组数据。

第一行包含两个正整数 \(T,K\),分别表示数据组数和询问类型(对于一个测试点内的所有数据,询问类型相同)。

以下行每行包含三个正整数 \(y,z,p\),描述一个询问。

Output

对于每个询问,输出一行答案。

对于询问类型 \(2\) 和 \(3\),如果不存在满足条件的,则输出“Orz, I cannot find x!”,注意逗号与“I”之间有一个空格。

Sample Input

3 1
2 1 3
2 2 3
2 3 3
3 2
2 1 3
2 2 3
2 3 3

Sample Output

2
1
2
2
1
0

HINT

\(1\le y,z,p\le 10^9\),\(p\)为质数,\(1\le T\le10\)

Solution

询问 \(2\)

\[ax\equiv b\pmod p\\
\Downarrow\\
ax-kp=b
\]

该方程有解的充要条件为 \(\gcd(a,p)\mid b\),答案为 \(b\times a^{-1}\bmod p\)。

询问 \(3\)

给定 \(a,b,p\),求最小的非负整数 \(x\),满足

\[a^x\equiv b\pmod p
\]

根据费马小定理可知

\[a^x\equiv a^{x \bmod p-1}\pmod p
\]

因此 \(x\) 从 \(0\) 枚举到 \(p-2\) 即可。

设 \(m={\left\lceil\sqrt p\right\rceil},x=i\times m-j\),有

\[a^{i\times m-j}\equiv b\pmod p
\]

移项得

\[(a^m)^i\equiv a^jb\pmod p
\]

首先从 \(0\dots m\) 枚举 \(j\),将得到的 \(a^jb\) 的值存入 \(hash\) 表中,然后从 \(1\dots m\) 枚举 \(i\),若表中存在 \((a^m)^i\),则当前 \(i\times m-j\) 即为答案。

Code

#include <cmath>
#include <cstdio>
#include <tr1/unordered_map> std::tr1::unordered_map<int,int> hash; int read() {
int x = 0; char c = getchar();
while (c < '0' || c > '9') c = getchar();
while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + (c ^ 48), c = getchar();
return x;
}
int gcd(int a, int b) {
return b ? gcd(b, a % b) : a;
}
int fastpow(int a, int b, int p) {
int res = 1;
for (; b; b >>= 1, a = 1LL * a * a % p)
if (b & 1) res = 1LL * res * a % p;
return res;
}
void bsgs(int a, int b, int p) {
if (a % p == 0) { puts("Orz, I cannot find x!"); return; }
int m = ceil(sqrt(p)), t = 1;
hash.clear(), hash[b % p] = 0;
for (int i = 1; i <= m; ++i)
t = 1LL * t * a % p, hash[1LL * t * b % p] = i;
a = t;
for (int i = 1; i <= m; ++i, t = 1LL * t * a % p)
if (hash.count(t)) { printf("%d\n", i * m - hash[t]); return; }
puts("Orz, I cannot find x!");
}
int main() {
int T = read(), K = read();
while (T--) {
int a = read(), b = read(), p = read();
if (K == 1) printf("%d\n", fastpow(a, b, p));
else if (K == 2) {
if (b % gcd(a, p)) puts("Orz, I cannot find x!");
else printf("%lld\n", 1LL * b * fastpow(a, p - 2, p) % p);
} else bsgs(a, b, p);
}
return 0;
}

[BZOJ 2242] [SDOI 2011] 计算器的更多相关文章

  1. 【BZOJ 2242】[SDOI2011]计算器

    Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...

  2. [BZOJ 2243] [SDOI 2011] 染色 【树链剖分】

    题目链接:BZOJ - 2243 题目分析 树链剖分...写了200+行...Debug了整整一天+... 静态读代码读了 5 遍 ,没发现错误,自己做小数据也过了. 提交之后全 WA . ————— ...

  3. [SDOI 2011]计算器

    Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...

  4. BZOJ 2243 SDOI 2011染色

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2243 算法讨论: 树链剖分把树放到线段树上.然后线段树的每个节点要维护的东西有左端点的颜色 ...

  5. [BZOJ 2285] [SDOI 2011] 保密

    Description 传送门 Solution 这道题的最大难点在于读懂题意(雾 分数规划求出 \(n\) 到 \(1\cdots n_1\) 每个点的最小 \(\sum\frac{t_i}{s_i ...

  6. BZOJ 2245 SDOI 2011 工作安排 费用流

    题目大意:有一些商品须要被制造.有一些员工.每个员工会做一些物品,然而这些员工做物品越多,他们的愤慨值越大,这满足一个分段函数.给出哪些员工能够做哪些东西,给出这些分段函数,求最小的愤慨值以满足须要被 ...

  7. [BZOJ 1879][SDOI 2009]Bill的挑战 题解(状压DP)

    [BZOJ 1879][SDOI 2009]Bill的挑战 Description Solution 1.考虑状压的方式. 方案1:如果我们把每一个字符串压起来,用一个布尔数组表示与每一个字母的匹配关 ...

  8. [BZOJ 2299][HAOI 2011]向量 题解(裴蜀定理)

    [BZOJ 2299][HAOI 2011]向量 Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), ...

  9. [BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT)

    [BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT) 题面 小C有一个集合S,里面的元素都是小于质数M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数 ...

随机推荐

  1. USGS-EROS项目espa-surface-reflectance中的Landsat8 大气校正LaSRC Version 1.3.0模块利用vs2010编译出windows64位版本(四)

    ,支持一些关键问题: 1    数据初始化问题.该问题是指在linux环境下编程标准c并编译,用户定义的变量默认初始值是0,但在windows 64 win7环境中,变量默认初始值是负值极小.... ...

  2. Word Count

    Word Count 一.个人Gitee地址:https://gitee.com/godcoder979/(该项目完整代码在这里) 二.项目简介: 该项目是一个统计文件字符.单词.行数等数目的应用程序 ...

  3. EntityFramework Code-First 简易教程(六)-------领域类配置之DataAnnotations

    EF Code-First提供了一个可以用在领域类或其属性上的DataAnnotation特性集合,DataAnnotation特性会覆盖默认的EF约定. DataAnnotation存在于两个命名空 ...

  4. Windows10系统无法更新

    方法一: 1.先检查一下windows update服务是否开启,并禁用杀毒软件: 2.如果此服务已经启动,先尝试更换一下网络环境重新更新: 3.如果更换网络环境后依然无法更新,就删除windows ...

  5. 修改文件属性(attrib)

    atrrib 命令: // 描述: (Attribute) 显示,设置或删除分配给文件或目录的属性. 如果在没有参数的情况下使用,attrib将显示当前目录中所有文件的属性. // 语法: attri ...

  6. 同步锁Synchronized与Lock的区别?

    synchronized与Lock两者区别: 1:Lock是一个接口,而Synchronized是关键字. 2:Synchronized会自动释放锁,而Lock必须手动释放锁. 3:Lock可以让等待 ...

  7. Jquery自动补全插件的使用

    1.引入css和js  <script src="js/jquery-ui.min.js"></script> <link href="cs ...

  8. 【Linux基础】查看硬件信息-系统

    1.查看计算机名 hostname 2.查看内核/操作系统/CPU信息 uname -a   4.查看操作系统版本(Linux) head -n 2 /etc/issue Red Hat Enterp ...

  9. HBase工具:如何查看HBase的HFile

    root@root:~/Desktop/sourceCodes/hbase-2.1.1/bin# ./hbase Usage: hbase [<options>] <command& ...

  10. Hadoop Yarn配置项 yarn.nodemanager.resource.local-dirs探讨

    1. What is the recommended value for "yarn.nodemanager.resource.local-dirs"? We only have ...