已知 $a,b,c\in\mathbb R$,求证:$|a|+|b|+|c|+|a+b+c|\geqslant |a+b|+|b+c|+|c+a|$


分析:不妨设$c=\max\{a,b,c\},\dfrac{a}{c}=x,\dfrac{b}{c}=y$两边同除$|c|$后只需证明

$|x|+|y|+1+|x+y+1|\ge|x+y|+|y+1|+|x+1|$
注意到恒等式$|x|+|y|+|z|=\max\{|x+y+z|,|x+y-z|,|x-y+z|,|x-y-z|\}$,易得.

练习:

设实数$x,y,z$满足
\begin{equation}
\left\{ \begin{aligned}
|x+2y-3z|& \le6\\
|x-2y+3z|&\le6\\
|x-2y-3z|&\le 6\\
|x+2y+3z|&\le6\\
\end{aligned} \right.
\end{equation}
则$|x|+|y|+|z|$的最大值为_____

答案:6

提示:注意到恒等式$|x|+|y|+|z|=\max\{|x+y+z|,|x+y-z|,|x-y+z|,|x-y-z|\}$,易得.

MT【322】绝对值不等式的更多相关文章

  1. MT【9】绝对值二次函数

    解答: 评:容易用绝对值不等式证明当$x\in[1,5]$时$|x^2+px+q|\ge2$

  2. MT【165】分段函数

    (2018浙江省赛12题改编)设$a\in R$,且对任意的实数$b$均有$\max\limits_{x\in[0,1]}|x^2+ax+b|\ge\dfrac{1}{4}$求$a$ 的范围. 提示: ...

  3. Codeforces Round #359(div 2)

    A:= v = B:^ w ^ C:一天n个小时,一个小时m分(n,m十进制),一个手表有两部分,左边表示时,右边表示分,但都是7进制,而且手表上最多只能有7个数字且数字不能重复,现在要你算出能正确表 ...

  4. UVa 11300 Spreading the Wealth(有钱同使)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: "Times New ...

  5. 决策树笔记:使用ID3算法

    决策树笔记:使用ID3算法 决策树笔记:使用ID3算法 机器学习 先说一个偶然的想法:同样的一堆节点构成的二叉树,平衡树和非平衡树的区别,可以认为是"是否按照重要度逐渐降低"的顺序 ...

  6. 【BZOJ 1045】 1045: [HAOI2008] 糖果传递

    1045: [HAOI2008] 糖果传递 Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 第一行一个正整数n& ...

  7. BZOJ 2989: 数列/4170: 极光

    题解: n倍经验题 首先比较容易想到的是对绝对值分类讨论 然后是4维偏序 1.查询和修改顺序 2.x>y 3.a[x]>a[y] 4.(x+a[x])-(y+a[y])<=k 这样是 ...

  8. bzoj 1112 poi 2008 砖块

    这滞胀题调了两天了... 好愚蠢的错误啊... 其实这道题思维比较简单,就是利用treap进行维护(有人说线段树好写,表示treap真心很模板) 就是枚举所有长度为k的区间,查出中位数,计算代价即可. ...

  9. 人教版高中数学(A版)

    必修1 (已看) 第一章 集合与函数概念 1.1 集合 1.2 函数及其表示 1.3 函数的基本性质 第二章 基本初等函数(1) 2.1 指数函数 2.2 对数函数 2.3 幂函数 第三章 函数的应用 ...

随机推荐

  1. KeePass全网最详使用指南

    从入门到熟练:KeePass全网最详使用指南 https://post.smzdm.com/p/713042/

  2. Android系统的三种分屏显示模式

    Google在Android 7.0中引入了一个新特性——多窗口支持,允许用户一次在屏幕上打开两个应用.在手持设备上,两个应用可以在"分屏"模式中左右并排或上下并排显示.在电视设备 ...

  3. SQLServer之通过视图修改数据

    通过视图增删改数据注意事项 需要对目标表的 UPDATE.INSERT 或 DELETE 权限(取决于执行的操作). 如果视图引用多个基表,则不能删除行. 如果视图引用多个基表,只能更新属于单个基表的 ...

  4. Python装饰器、内置函数之金兰契友

    装饰器:装饰器的实质就是一个闭包,而闭包又是嵌套函数的一种.所以也可以理解装饰器是一种特殊的函数.因为程序一般都遵守开放封闭原则,软件在设计初期不可能把所有情况都想到,所以一般软件都支持功能上的扩展, ...

  5. 宋宝华:Docker 最初的2小时(Docker从入门到入门)【转】

    最初的2小时,你会爱上Docker,对原理和使用流程有个最基本的理解,避免满世界无头苍蝇式找资料.本人反对暴风骤雨式多管齐下狂轰滥炸的学习方式,提倡迭代学习法,就是先知道怎么玩,有个感性认识,再深入学 ...

  6. iOS 防止离屏渲染为 image 添加圆角

        // image 分类 - (UIImage *)circleImage{ // NO 代表透明 UIGraphicsBeginImageContextWithOptions(self.siz ...

  7. 浅谈百度地图API的坑

    我们可以使用百度地图生成器生成地图码(功能开发 还是使用官方文档吧) 注意百度地图坑 1.地图和我们申请的ak码版本问题 (解决方案:推荐大家使用2.0) 远程链接:<script type=& ...

  8. Thread中的join()方法

    package com.qjc.thread; public class JoinExcemple { // join方法就是用来同步的 public static void main(String[ ...

  9. css实现单行(多行)文本溢出显示 ...

    overflow: hidden; text-overflow:ellipsis; white-space: nowrap; 当然还需要加宽度width属来兼容部分浏览. 以上为单行文本溢出===== ...

  10. webpack开发环境和生产环境切换原理

    在package.json中有如下设置: "scripts": {    "dev": "node build/dev-server.js" ...