已知 $a,b,c\in\mathbb R$,求证:$|a|+|b|+|c|+|a+b+c|\geqslant |a+b|+|b+c|+|c+a|$


分析:不妨设$c=\max\{a,b,c\},\dfrac{a}{c}=x,\dfrac{b}{c}=y$两边同除$|c|$后只需证明

$|x|+|y|+1+|x+y+1|\ge|x+y|+|y+1|+|x+1|$
注意到恒等式$|x|+|y|+|z|=\max\{|x+y+z|,|x+y-z|,|x-y+z|,|x-y-z|\}$,易得.

练习:

设实数$x,y,z$满足
\begin{equation}
\left\{ \begin{aligned}
|x+2y-3z|& \le6\\
|x-2y+3z|&\le6\\
|x-2y-3z|&\le 6\\
|x+2y+3z|&\le6\\
\end{aligned} \right.
\end{equation}
则$|x|+|y|+|z|$的最大值为_____

答案:6

提示:注意到恒等式$|x|+|y|+|z|=\max\{|x+y+z|,|x+y-z|,|x-y+z|,|x-y-z|\}$,易得.

MT【322】绝对值不等式的更多相关文章

  1. MT【9】绝对值二次函数

    解答: 评:容易用绝对值不等式证明当$x\in[1,5]$时$|x^2+px+q|\ge2$

  2. MT【165】分段函数

    (2018浙江省赛12题改编)设$a\in R$,且对任意的实数$b$均有$\max\limits_{x\in[0,1]}|x^2+ax+b|\ge\dfrac{1}{4}$求$a$ 的范围. 提示: ...

  3. Codeforces Round #359(div 2)

    A:= v = B:^ w ^ C:一天n个小时,一个小时m分(n,m十进制),一个手表有两部分,左边表示时,右边表示分,但都是7进制,而且手表上最多只能有7个数字且数字不能重复,现在要你算出能正确表 ...

  4. UVa 11300 Spreading the Wealth(有钱同使)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: "Times New ...

  5. 决策树笔记:使用ID3算法

    决策树笔记:使用ID3算法 决策树笔记:使用ID3算法 机器学习 先说一个偶然的想法:同样的一堆节点构成的二叉树,平衡树和非平衡树的区别,可以认为是"是否按照重要度逐渐降低"的顺序 ...

  6. 【BZOJ 1045】 1045: [HAOI2008] 糖果传递

    1045: [HAOI2008] 糖果传递 Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 第一行一个正整数n& ...

  7. BZOJ 2989: 数列/4170: 极光

    题解: n倍经验题 首先比较容易想到的是对绝对值分类讨论 然后是4维偏序 1.查询和修改顺序 2.x>y 3.a[x]>a[y] 4.(x+a[x])-(y+a[y])<=k 这样是 ...

  8. bzoj 1112 poi 2008 砖块

    这滞胀题调了两天了... 好愚蠢的错误啊... 其实这道题思维比较简单,就是利用treap进行维护(有人说线段树好写,表示treap真心很模板) 就是枚举所有长度为k的区间,查出中位数,计算代价即可. ...

  9. 人教版高中数学(A版)

    必修1 (已看) 第一章 集合与函数概念 1.1 集合 1.2 函数及其表示 1.3 函数的基本性质 第二章 基本初等函数(1) 2.1 指数函数 2.2 对数函数 2.3 幂函数 第三章 函数的应用 ...

随机推荐

  1. iOS----------计算一段代码执行时间

    CFAbsoluteTime start = CFAbsoluteTimeGetCurrent(); //在这写入要计算时间的代码 // do something CFAbsoluteTime end ...

  2. iOS----------教你如何使用 GitHub Desktop

    1.先创建一个工程项目Test 2.创建一个仓库Repository 3.提交到master(记得写标题) 4.推送到github上 5.创建仓库Respository成功

  3. sql左外连接和右外连接的区别例子转摘

    sql左外连接和右外连接的区别   两个表:A(id,name)数据:(1,张三)(2,李四)(3,王五)B(id,name)数据:(1,学生)(2,老师)(4,校长) 左连接结果:select A. ...

  4. PowerDesigner 使用教程(很具体,很实用)

    原文地址为:PowerDesigner 使用教程(很具体,很实用) 1.PowerDesigner 使用教程 从今日开始,每天一部分内容,在每个工作日,争取让大家天天都有的看,每天内容不会太多. 有错 ...

  5. LeetCode算法题-Shortest Unsorted Continuous Subarray(Java实现)

    这是悦乐书的第267次更新,第281篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第134题(顺位题号是581).给定一个整数数组,找到一个连续的子数组,按升序对该子数组 ...

  6. JavaScript—面向对象开发详解和垃圾回收

    面向对象的概述 ECMAScript 有两种开发模式:1.函数式(过程化),2.面向对象(OOP). 面向对象的语言有一个标志,那就是类的概念,而通过类可以创建任意多个具有相同属性和方法的对象.但是, ...

  7. python之迭代器、生成器、面向过程编程

    一 迭代器 一 迭代的概念 #迭代器即迭代的工具,那什么是迭代呢?#迭代是一个重复的过程,每次重复即一次迭代,并且每次迭代的结果都是下一次迭代的初始值 while True: #只是单纯地重复,因而不 ...

  8. 跳跳棋[LCA+二分查找]-洛谷1852

    传送门 这真是一道神仙题 虽然我猜到了这是一道LCA的题 但是... 第一遍看题,我是怎么也没想到能和树形图扯上关系 并且用上LCA 但其实其实和上一道lightoj上的那道题很类似 只不过那时一道很 ...

  9. Eclipse中的快捷键

    Ctrl+1:快捷修复(数字 1 不是字母 l) 将鼠标悬停到出错区域,按 Ctrl+1,出现快捷修复的菜单, 按上下方向键选择一种修复方式即可. 也可以将光标移动到出错区域,按 F2 + Enter ...

  10. 引用传递this关键字

    this关键字主要有三个应用: (1)this调用本类中的属性,也就是类中的成员变量: (2)this调用本类中的其他方法: (3)this调用本类中的其他构造方法,调用时要放在构造方法的首行.