Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a sequence of points of \(A\) converging to \(x\), then \(x \in \bar{A}\); the converse holds if \(X\) is metrizable.

Proof a) Sequence convergence \(\Longrightarrow\) the limit point belongs to \(\bar{A}\).

Let \(\{x_n\}_{n \in \mathbb{Z_+}}\) be a sequence of points in \(A\). When \(n \rightarrow \infty\), it converges to \(x\) topologically in \(X\). Then for all open set \(U\) containing \(x\), there exists an \(N \in \mathbb{Z_+}\), such that when \(n > N\), \(x_n \in U\). Hence \(U \cap A \neq \Phi\). According to Theorem 17.5 (a), \(x \in \bar{A}\).

b) \(x\) belongs to \(\bar{A}\) and \(X\) is metrizable \(\Longrightarrow\) Sequence convergence to \(x\).

Still according to Theorem 17.5 (a), when \(x \in \bar{A}\), for all open set \(U\) containing \(x\), \(U \cap A \neq \Phi\). However, this only ensures that the intersection is nonempty but is not enough to promise that there exists an \(N\) in \(\mathbb{Z}_+\), such that for all \(n > N\), \(x_n\) belongs to \(U\). Hence, the desired convergence sequence in \(A​\) does not necessarily exist.

If \(X​\) is assigned a metric, a collection of nested open balls \(\left\{B_n(x, \frac{1}{n})\right\}_{n \in \mathbb{Z}_+}​\) centered at \(x \in \bar{A}​\) can be constructed. For all \(n \in \mathbb{Z}_+​\), \(B_{n}(x, \frac{1}{n}) \cap A \neq \Phi​\) and an element \(x_n​\) can be selected from this intersection. Thus a sequence \(\{x_n\}_{n \in \mathbb{Z}_+}​\) convergent to \(x​\) is obtained.

Remark

  1. As shown in b) above, a metric assigned to the space \(X\) which generates the same topology as that used for defining sequence convergence is mandatory to ensure the existence of a convergent sequence to \(x\). This contradicts our common conception about the equivalence between the closeness of a set \(A\) and the existence of a convergent sequence with its limit point within \(A\). This is because the spaces we are dealing with in everyday life, such as Banach spaces, Hilbert spaces, have sound properties which have already included a well defined metric. However, when we come to the study of topology, such nice property is stripped away for the purpose of establishing a more abstract and general theory underpinning those high level and realistic topics.

  2. It is natural for us to ask that if an example can be given, where the space \(X\) has no associated metric and there is no sequence \(\{x_n\}_{n \in \mathbb{Z}_+}\) in \(A\) convergent to a point \(x \in \bar{A}\).

    Let’s consider a set \(X = S_{\Omega} \cup \{\Omega\}\) with \(S_{\Omega}\) being the minimal uncountable well-ordered set as defined in Lemma 10.2. Let \(X\) be assigned the order topology and let \(A = S_{\Omega}\) be a subset of \(X\). Because \(S_{\Omega}\) is the largest element in \(X\), any open set \(U\) in \(X\) containing \(\Omega\) must have the form \((x ,\Omega]\) with \(x \in S_{\Omega}\). Then it is obvious that \(U \cap S_{\Omega} \neq \Phi\) and thus \(\Omega\) belongs to \(\bar{S}_{\Omega}\). More accurately speaking, \(\Omega\) is a limit point of \(S_{\Omega}\).

    Next, we show that there is no sequence \(\{x_n\}_{n \in \mathbb{Z}_+}\) in \(S_{\Omega}\) convergent to \(\Omega\).

    Assume such sequence really exists. Because it is a countable set, according to Theorem 10.3, it has an upper bound \(x^*\) in \(S_{\Omega}\). We know from Lemma 10.2 that \(S_{\Omega}\) is uncountable and the section \(S_{x^*}\) is countable, therefore the set \(V = \{x | x \in S_{\Omega} \;\text{and}\; x > x^* \}\) is not empty. Then the open set \((x^*, \Omega]\) in \(X\) containing \(\Omega\) has an empty intersection with the sequence \(\{x_n\}_{n \in \mathbb{Z}_+}\) in \(S_{\Omega}\). Therefore, \(\{x_n\}_{n \in \mathbb{Z}_+}\) is not convergent to \(\Omega\).

  3. The contrapositive of part b) in this lemma can be used to prove that a space with a certain topology is not metrizable, i.e. by showing that there exists an abnormal point \(x​\) in the closure of \(A​\), to which there is no convergent sequence in \(A​\), we can prove that there is no metric for the space \(X​\) which can induce the same topology as that used for defining the sequence convergence.

  4. For all \(A \subset X\) and for all \(x \in \bar{A}\), if there is always a sequence in \(A\) convergent to \(x\), we still cannot assert that \(X\) is metrizable.

    This can be verified by giving a counter example. Let \(X = \mathbb{R}\) be given the finite complement topology, i.e. the space satisfies the \(T_1\) axiom. Then for any \(A \subset X\), if \(A\) is a finite set, \(A\) itself is closed. For all \(x \in \bar{A} = A\), \(\{x_n = x\}_{n \in \mathbb{Z}_+}\) is a sequence in \(A\) convergent to \(x\).

    If \(A\) is an infinite set, \(\bar{A} = \mathbb{R}\). This is because for all \(x \in \mathbb{R}\) and for all open set \(U\) in \(\mathbb{R}\) containing \(x\), its complement \(U^{\rm c}\) is closed and is thus finite. Assume \(U \cap A = \Phi\), then \(A \subset U^{\rm c}\). However, because \(A\) is infinite, it cannot be contained within the finite set \(U^{\rm c}\). Therefore, \(U \cap A \neq \Phi\) and it proves that for all \(x \in \mathbb{R}\) it belongs to the closure of \(A\). Hence \(\bar{A} = \mathbb{R}\).

    Let \(\{x_n\}_{n \in \mathbb{Z}_+}​\) be a sequence in \(A​\) which has an infinite number of different elements. This is feasible because \(A​\) itself is an infinite set. For all \(x \in \mathbb{R}​\) and for all open set \(U​\) in \(\mathbb{R}​\) containing \(x​\), its complement \(U^{\rm c}​\) is a closed finite set. Then we consider following two complete cases.

    • If for all \(y \in U^{\rm c}\), \(y \notin \{x_n\}_{n \in \mathbb{Z}_+}\), we have \(\{x_n\}_{n \in \mathbb{Z}_+} \subset U\), i.e. in the language of convergence, for all \(n >1 \), \(x_n \in U​\).
    • If there exists a finite subset \(V\) of \(U^{\rm c}\) such that \(V \subset \{x_n\}_{n \in \mathbb{Z}_+}\) and let \(N\) be the maximum index in the sequence for those elements in \(V\), then for all \(n > N\), \(x_n \in U\).

    Therefore, the sequence \(\{x_n\}_{n \in \mathbb{Z}_+}\) converges to \(x\) in any of the above two cases.

    This conclusion can be restated as below.

    Let \(\mathbb{R}\) be assigned the finite complement topology. Any sequence \(\{x_n\}_{n \in \mathbb{Z}_+} \subset \mathbb{R}\) having an infinite number of different elements can converge to any point \(x\) in \(\mathbb{R}\).

    Next, we need a small lemma to be proved:

    Every topological space \(X​\) with a metric \(d​\) satisfies the Hausdorff axiom.

    Proof For all \(x, y \in X\), let their distance be \(d(x, y) = \epsilon\). Select an open ball \(B_d(x, \frac{\epsilon}{2})\) and for all \(z \in B_d(x, \frac{\epsilon}{2})\), we have \(d(x, y) \leq d(x, z) + d(z, y)\) and thus \(d(z, y) \geq d(x, y) - d(x, z)\). Because \(d(x, z) < \frac{\epsilon}{2}\), \(d(z, y) > \epsilon - \frac{\epsilon}{2} = \frac{\epsilon}{2}\). Hence \(z \notin B_d(y, \frac{\epsilon}{2})\). Similarly, for all \(z \in B_d(y, \frac{\epsilon}{2})\), \(z \notin B_d(x, \frac{\epsilon}{2})\). Therefore, \(X\) satisfies the Hausdorff axiom.

    Up to now, the conditions in the proposition of this part of the remark have been met. Because \(\mathbb{R}\) with the finite complement topology only satisfies the \(T_1\) axiom, which is a weaker condition than the Hausdorff axiom, according to the contrapositive of the above lemma, \(\mathbb{R}\) is not metrizable.

James Munkres Topology: Lemma 21.2 The sequence lemma的更多相关文章

  1. James Munkres Topology: Sec 18 Exer 12

    Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...

  2. James Munkres Topology: Theorem 16.3

    Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...

  3. James Munkres Topology: Theorem 20.3 and metric equivalence

    Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...

  4. James Munkres Topology: Theorem 20.4

    Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...

  5. James Munkres Topology: Sec 37 Exer 1

    Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...

  6. James Munkres Topology: Sec 22 Exer 6

    Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...

  7. James Munkres Topology: Sec 22 Example 1

    Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...

  8. James Munkres Topology: Sec 22 Exer 3

    Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...

  9. James Munkres Topology: Theorem 19.6

    Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...

随机推荐

  1. 【linux】常用命令集锦&持续更新...

    滴:转载引用请注明哦[握爪]:https://www.cnblogs.com/zyrb/p/9709013.html  对深度学习训练及日常work中的常用linux命令进行整理. [一]screen ...

  2. Python 中使用 matplotlib 绘图中文字符显示异常的问题

    最近在使用 Python matplotlib 绘制图表时发现中文字符不能正确显示:比如在绘制折线图时,中文全部显示成▢▢▢的格式,虽然将数据改成英文就没什么问题,但是所有数据都这么做时不可行的,于是 ...

  3. 深入理解Java的三种工厂模式

    一.简单工厂模式 简单工厂的定义:提供一个创建对象实例的功能,而无须关心其具体实现.被创建实例的类型可以是接口.抽象类,也可以是具体的类 实现汽车接口 public interface Car { S ...

  4. VMware Workstation 常见问题解决

    本文以FAQ的方式进行整理,大家可以根据关键字进行查找即可. 问题一:VMware 安装64位操作系统报错“此主机支持Intel VT-x, 但Intel VT-x处于禁用状态” 问题二:This v ...

  5. Centos7添加新源

    yum repolist # 查看yum源列表yum localinstall http://dl.fedoraproject.org/pub/epel/7/x86_64/Packages/e/epe ...

  6. PHP数组函数详解大全

    一.数组操作的基本函数 数组的键名和值 array_values($arr);获得数组的值 array_keys($arr);获得数组的键名 array_flip($arr);数组中的值与键名互换(如 ...

  7. sorted

    排序是编程中经常使用到的算法,无论哪种排序算法, 本质上都是比较两个元素的大小.如果是数字,可以直接比较,但是如果是字符串或者是dict呢?直接比较数学上的大小是没有意义的,因此,比较的过程必须通过函 ...

  8. redis集群配置与管理

    Redis在3.0版本以后开始支持集群,经过中间几个版本的不断更新优化,最新的版本集群功能已经非常完善.本文简单介绍一下Redis集群搭建的过程和配置方法,redis版本是5.0.4,操作系统是中标麒 ...

  9. Vue + Element 配置报错

    { test: /\.(eot|svg|ttf|woff|woff2)$/, loader: 'file-loader'}

  10. Beta 冲刺(6/7)

    目录 摘要 团队部分 个人部分 摘要 队名:小白吃 组长博客:hjj 作业博客:beta冲刺(6/7) 团队部分 后敬甲(组长) 过去两天完成了哪些任务 ppt制作 视频拍摄 接下来的计划 准备答辩 ...