James Munkres Topology: Lemma 21.2 The sequence lemma
Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a sequence of points of \(A\) converging to \(x\), then \(x \in \bar{A}\); the converse holds if \(X\) is metrizable.
Proof a) Sequence convergence \(\Longrightarrow\) the limit point belongs to \(\bar{A}\).
Let \(\{x_n\}_{n \in \mathbb{Z_+}}\) be a sequence of points in \(A\). When \(n \rightarrow \infty\), it converges to \(x\) topologically in \(X\). Then for all open set \(U\) containing \(x\), there exists an \(N \in \mathbb{Z_+}\), such that when \(n > N\), \(x_n \in U\). Hence \(U \cap A \neq \Phi\). According to Theorem 17.5 (a), \(x \in \bar{A}\).
b) \(x\) belongs to \(\bar{A}\) and \(X\) is metrizable \(\Longrightarrow\) Sequence convergence to \(x\).
Still according to Theorem 17.5 (a), when \(x \in \bar{A}\), for all open set \(U\) containing \(x\), \(U \cap A \neq \Phi\). However, this only ensures that the intersection is nonempty but is not enough to promise that there exists an \(N\) in \(\mathbb{Z}_+\), such that for all \(n > N\), \(x_n\) belongs to \(U\). Hence, the desired convergence sequence in \(A\) does not necessarily exist.
If \(X\) is assigned a metric, a collection of nested open balls \(\left\{B_n(x, \frac{1}{n})\right\}_{n \in \mathbb{Z}_+}\) centered at \(x \in \bar{A}\) can be constructed. For all \(n \in \mathbb{Z}_+\), \(B_{n}(x, \frac{1}{n}) \cap A \neq \Phi\) and an element \(x_n\) can be selected from this intersection. Thus a sequence \(\{x_n\}_{n \in \mathbb{Z}_+}\) convergent to \(x\) is obtained.
Remark
As shown in b) above, a metric assigned to the space \(X\) which generates the same topology as that used for defining sequence convergence is mandatory to ensure the existence of a convergent sequence to \(x\). This contradicts our common conception about the equivalence between the closeness of a set \(A\) and the existence of a convergent sequence with its limit point within \(A\). This is because the spaces we are dealing with in everyday life, such as Banach spaces, Hilbert spaces, have sound properties which have already included a well defined metric. However, when we come to the study of topology, such nice property is stripped away for the purpose of establishing a more abstract and general theory underpinning those high level and realistic topics.
It is natural for us to ask that if an example can be given, where the space \(X\) has no associated metric and there is no sequence \(\{x_n\}_{n \in \mathbb{Z}_+}\) in \(A\) convergent to a point \(x \in \bar{A}\).
Let’s consider a set \(X = S_{\Omega} \cup \{\Omega\}\) with \(S_{\Omega}\) being the minimal uncountable well-ordered set as defined in Lemma 10.2. Let \(X\) be assigned the order topology and let \(A = S_{\Omega}\) be a subset of \(X\). Because \(S_{\Omega}\) is the largest element in \(X\), any open set \(U\) in \(X\) containing \(\Omega\) must have the form \((x ,\Omega]\) with \(x \in S_{\Omega}\). Then it is obvious that \(U \cap S_{\Omega} \neq \Phi\) and thus \(\Omega\) belongs to \(\bar{S}_{\Omega}\). More accurately speaking, \(\Omega\) is a limit point of \(S_{\Omega}\).
Next, we show that there is no sequence \(\{x_n\}_{n \in \mathbb{Z}_+}\) in \(S_{\Omega}\) convergent to \(\Omega\).
Assume such sequence really exists. Because it is a countable set, according to Theorem 10.3, it has an upper bound \(x^*\) in \(S_{\Omega}\). We know from Lemma 10.2 that \(S_{\Omega}\) is uncountable and the section \(S_{x^*}\) is countable, therefore the set \(V = \{x | x \in S_{\Omega} \;\text{and}\; x > x^* \}\) is not empty. Then the open set \((x^*, \Omega]\) in \(X\) containing \(\Omega\) has an empty intersection with the sequence \(\{x_n\}_{n \in \mathbb{Z}_+}\) in \(S_{\Omega}\). Therefore, \(\{x_n\}_{n \in \mathbb{Z}_+}\) is not convergent to \(\Omega\).
The contrapositive of part b) in this lemma can be used to prove that a space with a certain topology is not metrizable, i.e. by showing that there exists an abnormal point \(x\) in the closure of \(A\), to which there is no convergent sequence in \(A\), we can prove that there is no metric for the space \(X\) which can induce the same topology as that used for defining the sequence convergence.
For all \(A \subset X\) and for all \(x \in \bar{A}\), if there is always a sequence in \(A\) convergent to \(x\), we still cannot assert that \(X\) is metrizable.
This can be verified by giving a counter example. Let \(X = \mathbb{R}\) be given the finite complement topology, i.e. the space satisfies the \(T_1\) axiom. Then for any \(A \subset X\), if \(A\) is a finite set, \(A\) itself is closed. For all \(x \in \bar{A} = A\), \(\{x_n = x\}_{n \in \mathbb{Z}_+}\) is a sequence in \(A\) convergent to \(x\).
If \(A\) is an infinite set, \(\bar{A} = \mathbb{R}\). This is because for all \(x \in \mathbb{R}\) and for all open set \(U\) in \(\mathbb{R}\) containing \(x\), its complement \(U^{\rm c}\) is closed and is thus finite. Assume \(U \cap A = \Phi\), then \(A \subset U^{\rm c}\). However, because \(A\) is infinite, it cannot be contained within the finite set \(U^{\rm c}\). Therefore, \(U \cap A \neq \Phi\) and it proves that for all \(x \in \mathbb{R}\) it belongs to the closure of \(A\). Hence \(\bar{A} = \mathbb{R}\).
Let \(\{x_n\}_{n \in \mathbb{Z}_+}\) be a sequence in \(A\) which has an infinite number of different elements. This is feasible because \(A\) itself is an infinite set. For all \(x \in \mathbb{R}\) and for all open set \(U\) in \(\mathbb{R}\) containing \(x\), its complement \(U^{\rm c}\) is a closed finite set. Then we consider following two complete cases.
- If for all \(y \in U^{\rm c}\), \(y \notin \{x_n\}_{n \in \mathbb{Z}_+}\), we have \(\{x_n\}_{n \in \mathbb{Z}_+} \subset U\), i.e. in the language of convergence, for all \(n >1 \), \(x_n \in U\).
- If there exists a finite subset \(V\) of \(U^{\rm c}\) such that \(V \subset \{x_n\}_{n \in \mathbb{Z}_+}\) and let \(N\) be the maximum index in the sequence for those elements in \(V\), then for all \(n > N\), \(x_n \in U\).
Therefore, the sequence \(\{x_n\}_{n \in \mathbb{Z}_+}\) converges to \(x\) in any of the above two cases.
This conclusion can be restated as below.
Let \(\mathbb{R}\) be assigned the finite complement topology. Any sequence \(\{x_n\}_{n \in \mathbb{Z}_+} \subset \mathbb{R}\) having an infinite number of different elements can converge to any point \(x\) in \(\mathbb{R}\).
Next, we need a small lemma to be proved:
Every topological space \(X\) with a metric \(d\) satisfies the Hausdorff axiom.
Proof For all \(x, y \in X\), let their distance be \(d(x, y) = \epsilon\). Select an open ball \(B_d(x, \frac{\epsilon}{2})\) and for all \(z \in B_d(x, \frac{\epsilon}{2})\), we have \(d(x, y) \leq d(x, z) + d(z, y)\) and thus \(d(z, y) \geq d(x, y) - d(x, z)\). Because \(d(x, z) < \frac{\epsilon}{2}\), \(d(z, y) > \epsilon - \frac{\epsilon}{2} = \frac{\epsilon}{2}\). Hence \(z \notin B_d(y, \frac{\epsilon}{2})\). Similarly, for all \(z \in B_d(y, \frac{\epsilon}{2})\), \(z \notin B_d(x, \frac{\epsilon}{2})\). Therefore, \(X\) satisfies the Hausdorff axiom.
Up to now, the conditions in the proposition of this part of the remark have been met. Because \(\mathbb{R}\) with the finite complement topology only satisfies the \(T_1\) axiom, which is a weaker condition than the Hausdorff axiom, according to the contrapositive of the above lemma, \(\mathbb{R}\) is not metrizable.
James Munkres Topology: Lemma 21.2 The sequence lemma的更多相关文章
- James Munkres Topology: Sec 18 Exer 12
Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...
- James Munkres Topology: Theorem 16.3
Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...
- James Munkres Topology: Theorem 20.3 and metric equivalence
Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...
- James Munkres Topology: Theorem 20.4
Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...
- James Munkres Topology: Sec 37 Exer 1
Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...
- James Munkres Topology: Sec 22 Exer 6
Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...
- James Munkres Topology: Sec 22 Example 1
Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...
- James Munkres Topology: Sec 22 Exer 3
Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...
- James Munkres Topology: Theorem 19.6
Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...
随机推荐
- 微信小程序之:wepy框架
1.介绍 WePY 是 腾讯 参考了Vue 等框架对原生小程序进行再次封装的框架,更贴近于 MVVM 架构模式, 并支持ES6/7的一些新特性. 2.使用 npm install -g wepy-cl ...
- Vue(三)指令
v-text:更新元素的text内容 <template> <div class="about"> <p v-text="msg" ...
- 怎么添加在安装好的nvidia-docker上面根据Dockerfile构建自己所需要的运行环境
在已经创建好nvidia-docker环境之后,对于新手小白来说,又有一个问题了,就是如何根据Dockerfile来构建试验所需要的docker环境 主要是以下几个步骤 首先创建一个mydocker文 ...
- Jenkins-在windows上配置自动化部署(Jenkins+Gitblit)
Jenkins-在windows上配置自动化部署(Jenkins+Gitblit) 1. 安装好 Jenkins(注:安装目录需没有空格,否则安装gitlab hook 插件时会报错,安装在c盘跟目录 ...
- .net core引用错误的Entity Framework而导致不能正常迁移数据的解决办法
本人刚学.net core,因此在学习过程中会遇上许许多多的坑.每一位初学者最大的问题在于资料的查看不仔细或是没有正确理解里面的内容,导致在后面自己在不知道错误的情况下做了一个小动作.对于完全没有理解 ...
- Flink 核心技术浅析(整理版)
1. Flink简介 Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink流执行引擎(streaming dataflow engine),提供支 ...
- Java使用POI解析Excel表格
概述 Excel表格是常用的数据存储工具,项目中经常会遇到导入Excel和导出Excel的功能. 常见的Excel格式有xls和xlsx.07版本以后主要以基于XML的压缩格式作为默认文件格式xlsx ...
- Windows 10中Oracle数据库导出到Access数据库(MDB)
本篇博文简单介绍将Oracle数据库中表导出到Access数据库(主要是MDB格式)的方法.主要有三种,分别是PL/SQL.ESFDatabaseMigrationToolkit及ODBC. PL/S ...
- js同步、异步、延时、无阻塞加载
一.同步加载 平常默认用的都是同步加载.如:<script src="http://yourdomain.com/script.js"></script> ...
- RestTemplate通过InputStreamResource上传文件
需求:从ftp取文件并http调用某接口上传此文件 偷懒的话可以从ftp上取文件存到本地,再调用接口上传文件,如下 String ftpPath = "/ftp/path/file.bin& ...