dp练习--
动态规划(DP)算法
动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法。利用各个阶段之间的关系,逐个求解,最终求得全局最优解,需要确认原问题与子问题、动态规划状态、边界状态、边界状态结值、状态转移方程。
一、爬楼梯leetcode70:
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Note: Given n will be a positive integer.
Example 1:
Input:
Output:
Explanation: There are two ways to climb to the top.
. step + step
. steps
Example 2:
Input:
Output:
Explanation: There are three ways to climb to the top.
. step + step + step
. step + steps
. steps + step
方法一:利用n个楼梯的步数,与n-1还有n-2之间的关系可以退出,f(n)==f(n-1)+f(n-2),相当于是直接考虑为n-1再上一步,和n-2直接上两步,不能考虑n-2有两种走法(一步一步,和一次两步,一步一步的会和n-1中的重复,导致算多了),最后不断的迭代直至可以n==1或者n==2,可以直接求出结果。
这个方法相当于是根据各个阶段之间的关系,列出迭代关系,并且写出临界解,从而结束递归的过程,否则将一直递归下去(所有的递归都是如此,如果没有边界条件提前结束递归,递归将不会停止)
这个时间复杂度是2^n相当于是一颗二叉树来着,leetcode显示time limit exceed
int climbStairs(int n) {
if(n==||n==){
return n;
}
return climbStairs(n-)+climbStairs(n-);
}
方法二:利用迭代来实现尾递归
由于方法一是利用了尾递归来实现算法,考虑采用迭代来实现递归,并且递归本身算法复杂度是要远远大于其对应的迭代循环算法复杂度的,所以考虑利用迭代来减少时间复杂度。两种方法的差别在于递归是从上往下算,迭代是从下往上算。
class Solution {
public:
int climbStairs(int n) {
vector<int>iteration(n+,); //initializition
iteration[]=;
iteration[]=;
int i=;
while(i<n+){
iteration[i]=iteration[i-]+iteration[i-];
i++;
}
return iteration[n];
}
};
时间复杂度是O(n),相比较于尾递归大大优化,leetcode显示ac。
二、抢劫犯问题leetcode198
You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.
Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.
题目分析:这个题目的分析关键在于DP算法中状态转移方程的求解,也就是求解是迭代关系,可以发现对于第i个房间而言,如果不抢劫第i个房间那么就是i-1个的抢劫数目,如果抢劫第i个房间那么就是一定不能抢劫i-1个房间,相当于是i-2个房间的抢劫数目,两者时间的最大值即可,从而成功得出迭代关系。
注意自身在分析问题时的错误:
一:在无法的出迭代关系的情况下,没有考虑根据题意堆可能的情况进行分类,注意两个题目都是进行了分类的讨论,才得以顺利的得出迭代关系,并且盲目的理解为迭代关系一定是两者之间的和,没有考虑到最大值得情况。
二:在考虑迭代关系时一定要思考如何引入第i-1个和第i-2个问题的解,这道题就是通过分类讨论,成功剥离出了i-1和i-2的情况;迭代关系的另一个要素是如何把i与i-1和i-2之间的关系找到
三:在考虑迭代关系时一定把i考虑成足够大,因为在代码实现过程中i很小的情况是直接给出的,直接赋值的(对于有dp数组而言),i很小的情况下只是考虑为边界条件,作为循环的起始或者是迭代的结束。所以考虑迭代关系时一定不要具体化i而是直接假设i足够大去考虑。
求取迭代关系的步骤:
1、根据题意分类讨论,分类讨论一定要达到引入i-1和i-2的解
2、挖掘i和i-1还有i-2之间的关系
3、边界条件确认
方法一、使用迭代法
class Solution {
public:
int rob(vector<int>& nums) {
if(nums.empty()) return ;
if(nums.size()==) return nums[];
vector<int>dp(nums.size(),);
dp[]=nums[];
dp[]=max(nums[],nums[]);
for(int i=;i<nums.size();i++){
dp[i]=max(dp[i-]+nums[i],dp[i-]);
}
return dp[nums.size()-];
}
};
时间复杂度为O(n),运行时间3ms
方法二、使用递归算法
class Solution {
public:
int rob(vector<int>& nums) {
int size=nums.size();
if(size==) return ;
if(size==) return nums[];
if(size==) return max(nums[],nums[]);
vector<int>a1(nums.begin(),nums.end()-);
vector<int>a2(nums.begin(),nums.end()-);
return max(rob(a1),rob(a2)+nums[size-]); }
};
可以发现这种方法再次出现了time limit exceed,时间复杂度是O(2^n),以后不用再考虑递归的DP算法了,直接使用迭代,时间复杂度降低很多。
三、最大子段和leetcode53
Given an integer array nums
, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
注意自身在分析问题时的错误:
在分析问题的时候没有灵活变通,直接考虑前i个连续子数组数组的最大值,将无法进行分类讨论,无法得到递归关系,并且在考虑递归关系时也是直接考虑了i与i-1还有i-2之间的关系,其实可以考虑为i与i-1的关系即可,只要是一种可以迭代出所有情况的关系即可。在不能够得出迭代关系的时候需要变通的考虑,改变dp数组的意义,不需要一步到位,只要保证可以通过dp数组得到最后的结果即可。
code:dp数组表示的是以第i个元素结尾的连续子数组的最大值,最后再寻找dp的最大值
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int size=nums.size();
vector<int>dp(size,);
dp[]=nums[];
for(int i=;i<size;i++){
if(dp[i-]>) dp[i]=dp[i-]+nums[i];
else dp[i]=nums[i];
}
int max1=dp[];
for(int i=;i<size;i++){
max1=max(max1,dp[i]);
}
return max1;
}
};
从第四题开始之后的题目都会较为复杂的情况
四、找零钱和leetcode322(非常经典的DP算法)
You are given coins of different denominations and a total amount of money amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1
.
Example 1:
coins = [1, 2, 5]
, amount = 11
return 3
(11 = 5 + 5 + 1)
Example 2:
coins = [2]
, amount = 3
return -1
.
Note:
You may assume that you have an infinite number of each kind of coin.
注:这道题自己还是没有能够理解到迭代关系的思想,可以再看一下solution,此时实在无法理解
注意自身在分析问题时的错误:(假设已经理解了迭代关系)
一、这个迭代关系比较特殊,并不是i-1,i-2之类的,而是会变化的,随着coins的不同会发生改变,所以需要对coins进行遍历,在循环中加入条件判断顺便很好地解决了是否会越界的问题。
....没有理解这道题果然写不出总结
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
vector<int>dp(amount+,amount+);
dp[]=;
for(int i=;i<=amount;i++){
for(int m:coins){
if(m<=i) dp[i]=min(dp[i],dp[i-m]+);
}
}
if(dp.back()==amount+) return -;
else return dp.back();
}
};
五、三角形
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[],
[,],
[,,],
[,,,]
]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
这道题目类似于第三题,都是对dp数组的意义进行转换,从而以退为进解决问题,这道题目是自己独立完成的,所以就不写心得了,直接上代码
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
int size=triangle.size();
vector<vector<int>>dp(size,vector<int>(size,INT_MAX));
dp[][]=triangle[][];
for(int i=;i<size;i++){
for(int j=;j<triangle[i].size();j++){
if(j==) dp[i][j]=dp[i-][j]+triangle[i][j];
if(j==triangle[i].size()-) dp[i][j]=dp[i-][j-]+triangle[i][j];
if(j!=&&j!=triangle[i].size()-) dp[i][j]=min(dp[i-][j-]+triangle[i][j],dp[i-][j]+triangle[i][j]);
}
}
return *min_element(dp[size-].begin(),dp[size-].end());
}
};
dp练习--的更多相关文章
- BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4142 Solved: 1964[Submit][Statu ...
- 2013 Asia Changsha Regional Contest---Josephina and RPG(DP)
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4800 Problem Description A role-playing game (RPG and ...
- AEAI DP V3.7.0 发布,开源综合应用开发平台
1 升级说明 AEAI DP 3.7版本是AEAI DP一个里程碑版本,基于JDK1.7开发,在本版本中新增支持Rest服务开发机制(默认支持WebService服务开发机制),且支持WS服务.RS ...
- AEAI DP V3.6.0 升级说明,开源综合应用开发平台
AEAI DP综合应用开发平台是一款扩展开发工具,专门用于开发MIS类的Java Web应用,本次发版的AEAI DP_v3.6.0版本为AEAI DP _v3.5.0版本的升级版本,该产品现已开源并 ...
- BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4026 Solved: 1473[Submit] ...
- [斜率优化DP]【学习笔记】【更新中】
参考资料: 1.元旦集训的课件已经很好了 http://files.cnblogs.com/files/candy99/dp.pdf 2.http://www.cnblogs.com/MashiroS ...
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- px、dp和sp,这些单位有什么区别?
DP 这个是最常用但也最难理解的尺寸单位.它与“像素密度”密切相关,所以 首先我们解释一下什么是像素密度.假设有一部手机,屏幕的物理尺寸为1.5英寸x2英寸,屏幕分辨率为240x320,则我们可以计算 ...
- android px转换为dip/dp
/** * 根据手机的分辨率从 dp 的单位 转成为 px(像素) */ public int dipTopx(Context context, float dpValue) { final floa ...
- POJ 3254. Corn Fields 状态压缩DP (入门级)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9806 Accepted: 5185 Descr ...
随机推荐
- ADO.Net中DataSet的应用
一.知识点描述 1.DataSet是ADO.NET的中心概念.可以把DataSet当成内存中的数据库,DataSet是不依赖于数据库的独立数据集合.也就是说,即使断开数据链路,或者关闭数据库,Data ...
- linux 常用命令及实例
转载:https://www.cnblogs.com/xiaoyafei/p/9163976.html 在linux中,绝大多数命令都参照 命令 选项 参数 选项:适用于调整命令的功能的 参数:指的是 ...
- 3D数学基础(四)四元数和欧拉角
一.四元数 四元数本质上是个高阶复数,可视为复数的扩展,表达式为y=a+bi+cj+dk.在说矩阵旋转的时候提到了它,当然四元数在Unity里面主要作用也在于此.在Unity编辑器中的Transfor ...
- 为UITextField增加MaxLength特性
iOS 实现方案 在 HTML 的世界里,输入框天生就有 MaxLength 属性,可以限制用户输入的最大字符数量 可惜 iOS 上对应的 UITextField 并没有这样方便的属性,只有自己动手来 ...
- 用chrome和anywhere,配合安卓机搭建最简单的移动端页面测试。
很多时候,我们前端在写移动端页面的时候,虽然目前chrome有调试模式,可以模拟手机的部分效果,但仍有部分效果需要直接在手机上进行页面的调试,今天就在这里推荐一个适合windows+安卓的无需连接局域 ...
- Failed to load ApplicationContext ,Error creating bean with name 'adminUserService': Injection of autowired dependencies failed;
Druid配置的时候出现这个问题: "C:\Program Files\Java\jdk1.8.0_191\bin\java" -ea -Didea.test.cyclic.buf ...
- Spring Security框架下Restful Token的验证方案
项目使用Restful的规范,权限内容的访问,考虑使用Token验证的权限解决方案. 验证方案(简要概括): 首先,用户需要登陆,成功登陆后返回一个Token串: 然后用户访问有权限的内容时需要上传T ...
- SQLI DUMB SERIES-19
(1)根据题意,从Referer入手 (2)报错注入与上一关相同.如爆库名: 'and extractvalue(1,concat(0x7e,(select database()),0x7e)) an ...
- chrome中安装.crx后缀的离线插件
在前端开发中常常需要在chrome中安装一些插件辅助开发,比如最常用的Postman.React Developer Tools.Vue.js devtools等等...今天分享一下不需要“FQ”的插 ...
- Leetcode 两数之和 (散列表)
给定一个整数数组和一个目标值,找出数组中和为目标值的两个数. 你可以假设每个输入只对应一种答案,且同样的元素不能被重复利用. 示例: 给定 nums = [2, 7, 11, 15], target ...