一. 装完caffe当然要来跑跑自带的demo,在examples文件夹下。

先来试试用于手写数字识别的mnist,在 examples/mnist/ 下有需要的代码文件,但是没有图像库。

mnist库有50000个训练样本,10000个测试样本,都是手写数字图像。

  caffe支持的数据格式为:LMDB  LEVELDB

  IMDB比LEVELDB大,但是速度更快,且允许多种训练模型同时读取同一数据集。

  默认情况,examples里支持的是IMDB文件,不过你可以修改为LEVELDB,后面详解。

  mnist数据集建议网上搜索下载,网盘有很多,注意将文件夹放到\examples\mnist目录下,且最好命名为图中格式,

否则可能无法读取文件需手动配置。

  笔者之前下的数据集命名的下划线是连接线就会报错无法读取文件,所以注意文件夹名字!

Windows下最好选择LEVELDB文件,Linux则随意了。下好了LEVELDB文件就不用再使用convert_imageset函数了,省去了转换图片格式和计算均值的步骤。

  二. 训练mnist模型

  mnist的网络训练模型文件为: lenet_train_test.prototxt

name: "LeNet"
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
data_param {
source: "examples/mnist/mnist_train_leveldb"
batch_size:
backend: LEVELDB
}
}
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
scale: 0.00390625
}
data_param {
source: "examples/mnist/mnist_test_leveldb"
batch_size:
backend: LEVELDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult:
}
param {
lr_mult:
}
convolution_param {
num_output:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult:
}
param {
lr_mult:
}
convolution_param {
num_output:
kernel_size:
stride:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size:
stride:
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
param {
lr_mult:
}
param {
lr_mult:
}
inner_product_param {
num_output:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult:
}
param {
lr_mult:
}
inner_product_param {
num_output:
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "ip2"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
}

一般修改两个DATA层的 “source”文件路径就行,上面的例子中,我已经改了,改为mnist的训练集和测试集文件夹路径。再就是注意“backend: LEVELDB”,默认的backend应该是IMDB要修改!

  网络模型 lenet_train_test.prototxt修改后再修改 lenet_solver.prototxt

该文件主要是一些学习参数和策略:

  

 # The train/test net protocol buffer definition
net: "examples/mnist/lenet_train_test.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size and test iterations,
# covering the full , testing images.
test_iter:
# Carry out testing every training iterations.
test_interval:
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
# Display every iterations
display:
# The maximum number of iterations
max_iter:
# snapshot intermediate results
snapshot:
snapshot_prefix: "examples/mnist/lenet"
# solver mode: CPU or GPU
solver_mode: CPU

带#的注释可以不管,能理解最好:

  第二行的 net:  路径需改为自己的网络模型xx_train_test.prototxt路径。其他的学习率 base_lr,lr_policy等不建议修改;max_iter最大迭代次数可以稍微改小,display显示间隔也可以随意修改~最后一行,我是只有CPU模式所以设为CPU,如果可以用GPU加速可设为GPU!

  到这基本设置就结束了,然后就是写命令执行测试程序了:

我选择写了批处理.bat文件执行,也可以直接在CMD环境输命令执行。

  新建mnist_train.bat,内容如下:

cd ../../
"Build/x64/Debug/caffe.exe" train --solver=examples/mnist/lenet_solver.prototxt
pause

根据自己的情况修改第二行的路径位置,Windows应该都是在Build/x64目录下,有的博客写的/bin/目录其实是Linux的并不适用于Windows环境。还要注意使用斜线“/”,不要使用“\”无法识别,Python代码多为后者要修改!

我的环境只有Debug目录,如果你有Realease目录,使用Realease目录。

运行.bat成功后,会开始训练,训练结束界面如下:

  最后几行可以看到accuracy的准确率可以达到99%,也是相当准确了!

提示,caffe文件夹内会生成.caffemodel文件

使用caffemodel文件开始测试:

  三.测试数据

  由于测试数据集也是直接下载好了的LEVELDB文件,所以省了不少步骤

  直接新建mnist_test.bat文件,类似训练mnist模型一样,对该模型进行数据测试。  

cd ../../
"Build/x64/Debug/caffe.exe" test --model=examples/mnist/lenet_train_test.prototxt -weights=examples/mnist/lenet_iter_10000.caffemodel
pause

  类似mnits_train.bat,修改文件路径名,test表示用于测试,model指向自己的网络模型文件,最后添加权值文件.caffemodel进行测试。

  运行mnist_test.bat后,成功界面如下:

  

  最后一行还是有98%的准确率还是很不错的,说明模型生成的还不错。

  

总结:其实还遇到了不少零零碎碎的问题,大多都可以百度解决,主要是记得修改对自己的文件路径目录,Windows下一定要使用LEVELDB数据文件,.prototxt也记得修改,然后就是等待模型跑完看结果了,看到高准确率还是很开心的~

  四. 使用该模型

  模型训练好了,数据也只是测试了,那么我们要使用该模型判断一张图片是数字几该如何做呢?

这个时候需要生成 classification.exe,然后执行相应的.bat命令来预测图片的分类结果。

  mnist分类使用可以参考http://www.cnblogs.com/yixuan-xu/p/5862657.html

  发现OpenCV可以加载caffe 框架模型,准备再写一篇博客进行实践介绍~

http://docs.opencv.org/3.1.0/d5/de7/tutorial_dnn_googlenet.html

Windows caffe 跑mnist实例的更多相关文章

  1. 用caffe跑自己的数据,基于WINDOWS的caffe

    本文详细介绍,如何用caffe跑自己的图像数据用于分类. 1 首先需要安装过程见 http://www.cnblogs.com/love6tao/p/5706830.html 同时依据上面教程,生成了 ...

  2. 运行caffe自带的mnist实例教程

    运行caffe自带的mnist实例教程 本文结合几篇博文总结下来的,附上其中一篇原博文链接以供参考:http://blog.sina.com.cn/s/blog_168effc7e0102xjr1.h ...

  3. caffe mnist实例 --lenet_train_test.prototxt 网络配置详解

    1.mnist实例 ##1.数据下载 获得mnist的数据包,在caffe根目录下执行./data/mnist/get_mnist.sh脚本. get_mnist.sh脚本先下载样本库并进行解压缩,得 ...

  4. Windows下用Caffe跑自己的数据(遥感影像)

    1 前言 Caffe对于像我这样的初学者来说是一款非常容易上手的深度学习框架.关于用Caffe跑自己的数据这样的博客已经非常多,感谢前辈们为我们提供的这么好的学习资源.这里我主要结合我所在的行业,说下 ...

  5. windows下使用caffe测试mnist数据集

    在win10机子上装了caffe,感谢大神们的帖子,要入坑caffe-windows的朋友们看这里,还有这里,安装下来基本没什么问题. 好了,本博文写一下使用caffe测试mnist数据集的步骤. 1 ...

  6. Windows+Caffe+VS2013+python接口配置过程

    前段时间在笔记本上配置了Caffe框架,中间过程曲曲折折,但由于懒没有将详细过程总结下来,这两天又在一台配置较高的台式机上配置了Caffe,配置时便非常后悔当初没有写到博客中去,现已配置好Caffe, ...

  7. caffe 试运行MNIST

    转自:http://www.cnblogs.com/NanShan2016/p/5469942.html 编译完caffe后,在D:\caffe\caffe-master\caffe-master\b ...

  8. mxnet实战系列(一)入门与跑mnist数据集

    最近在摸mxnet和tensorflow.两个我都搭起来了.tensorflow跑了不少代码,总的来说用得比较顺畅,文档很丰富,api熟悉熟悉写代码没什么问题. 今天把两个平台做了一下对比.同是跑mn ...

  9. Caffe系列4——基于Caffe的MNIST数据集训练与测试(手把手教你使用Lenet识别手写字体)

    基于Caffe的MNIST数据集训练与测试 原创:转载请注明https://www.cnblogs.com/xiaoboge/p/10688926.html  摘要 在前面的博文中,我详细介绍了Caf ...

随机推荐

  1. DOTween 相关API效果

    1,首先看一遍完整Tween路径 2,操作 DoPlay->DoRestart,DoRestart是从调用时刻重新开始开始执行Tween 3,操作 DoPlay->DoReWind,DoR ...

  2. 老婆大人 split,slice,splice,replace的用法

    split()方法用于把一个字符串分割成字符串数组 str.split("字符串/正则表达式从该参数制定额地方分割str",可选,可指定返回数组的最大长度,如果没设置参数,整个字符 ...

  3. Python——日志模块(logging)

    一.日志说明 日志是跟踪软件运行时所发生的事件的一种方法.软件开发者在代码中调用日志函数,表明发生了特定的事件.事件由描述性消息描述,该描述性消息可以可选地包含可变数据(即,对于事件的每次出现都潜在地 ...

  4. 爬虫系列之mongodb

    mongo简介 MongoDB是一个基于分布式文件存储的数据库.由C++语言编写.旨在为WEB应用提供可扩展的高性能数据存储解决方案. MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非 ...

  5. 支付宝支付demo(亲测)

    支付宝支付demo 这个是java后台调起支付的demo,直接将body返回给安卓端即可调起支付 package com.dyy.test; import java.text.SimpleDateFo ...

  6. 【XSY2843】「地底蔷薇」 NTT什么的 扩展拉格朗日反演

    题目大意 给定集合\(S\),请你求出\(n\)个点的"所有极大点双连通分量的大小都在\(S\)内"的不同简单无向连通图的个数对\(998244353\)取模的结果. \(n\le ...

  7. docker_weave

    安装 curl -L git.io/weave -o /usr/local/bin/weave chmod a+x /usr/local/bin/weave 启动 weave weave launch ...

  8. logstash/conf.d文件编写

    logstash-01.conf input { beats { port => 5044 host => "0.0.0.0" type => "log ...

  9. Codeforces 1082B Vova and Trophies(前缀+后缀)

    题目链接:Vova and Trophies 题意:给定长度为n的字符串s,字符串中只有G和S,只允许最多一次操作:任意位置的两个字符互换.求连续G的最长长度. 题解:维护pre和pr,nxt和nx. ...

  10. Git服务器Gogs简易安装-Windows环境

    1.下载git for windows https://github.com/git-for-windows/git/releases/download/v2.15.0.windows.1/Git-2 ...