[Spark][Streaming]Spark读取网络输入的例子
Spark读取网络输入的例子:
参考如下的URL进行试验
https://stackoverflow.com/questions/46739081/how-to-get-record-in-string-format-from-sockettextstream
http://www.cnblogs.com/FG123/p/5324743.html
发现 先执行 nc -lk 9999 ,再执行 spark 程序之后,
如果停止 nc ,spark程序会报错:
类似于:
-------------------------------------------
Time: 2017-10-28 19:32:02
-------------------------------------------
17/10/28 19:32:23 ERROR ReceiverTracker: Deregistered receiver for stream 0: Restarting receiver with delay 2000ms: Error connecting to localhost:9999 - java.net.ConnectException: Connection refused
at java.net.PlainSocketImpl.socketConnect(Native Method)
at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:350)
at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:206)
at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:188)
at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)
at java.net.Socket.connect(Socket.java:589)
at java.net.Socket.connect(Socket.java:538)
at java.net.Socket.<init>(Socket.java:434)
at java.net.Socket.<init>(Socket.java:211)
at org.apache.spark.streaming.dstream.SocketReceiver.receive(SocketInputDStream.scala:73)
at org.apache.spark.streaming.dstream.SocketReceiver$$anon$2.run(SocketInputDStream.scala:59)
这表明,两者已经建立 的 通信。但是没有看到预想的 word count 输出。我猜测是 用于参与计算的进程数不够,所以进行如下改动:
sc = SparkContext("local[2]", "streamwordcount")
改为:
sc = SparkContext("local[3]", "streamwordcount")
整个程序如下:
[training@localhost ab]$ cat test.py
#showing remote messages
from __future__ import print_function
import sys
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
if __name__ == "__main__":
sc = SparkContext("local[3]", "streamwordcount")
# 创建本地的SparkContext对象,包含3个执行线程
ssc = StreamingContext(sc, 2)
# 创建本地的StreamingContext对象,处理的时间片间隔时间,设置为2s
lines = ssc.socketTextStream("localhost", 9999)
words = lines.flatMap(lambda line: line.split(" "))
# 使用flatMap和Split对2秒内收到的字符串进行分割
pairs = words.map(lambda word: (word, 1))
wordCounts = pairs.reduceByKey(lambda x, y: x + y)
wordCounts.pprint()
ssc.start()
# 启动Spark Streaming应用
ssc.awaitTermination()
再次运行 nc 程序
[training@localhost ~]$ nc -lk 9999
运行 spark 程序:
[training@localhost ~]$ spark-submit /home/training/ab/test.py
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/lib/zookeeper/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/lib/flume-ng/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
在nc窗口中输入一些数据:
aaa bbb ccc
ddd aaa sss
sss bbb bbb
kkk jjj mmm
ooo kkk jjj
mmm ccc ddd
eee fff sss
rrr nnn ooo
ppp sss zzz
mmm sss ttt
kkk sss ttt
rrr ooo ppp
kkk qqq kkk
lll nnn jjj
rrr ooo sss
kkk aaa ddd
aaa aaa fff
eee sss nnn
ooo ppp qqq
qqq sss eee
sss mmm nnn
此时,经过一小会,可以看到,spark 程序的窗口输出:
-------------------------------------------
Time: 2017-10-28 19:33:50
-------------------------------------------
-------------------------------------------
Time: 2017-10-28 19:33:52
-------------------------------------------
-------------------------------------------
Time: 2017-10-28 19:33:54
-------------------------------------------
-------------------------------------------
Time: 2017-10-28 19:33:56
-------------------------------------------
-------------------------------------------
Time: 2017-10-28 19:33:58
-------------------------------------------
-------------------------------------------
Time: 2017-10-28 19:34:00
-------------------------------------------
(u'', 1)
(u'mmm', 2)
(u'bbb', 3)
(u'nnn', 1)
(u'ccc', 2)
(u'rrr', 1)
(u'sss', 3)
(u'fff', 1)
(u'aaa', 2)
(u'ooo', 2)
...
-------------------------------------------
Time: 2017-10-28 19:34:02
-------------------------------------------
-------------------------------------------
Time: 2017-10-28 19:34:04
-------------------------------------------
(u'ppp', 1)
(u'sss', 1)
(u'zzz', 1)
-------------------------------------------
Time: 2017-10-28 19:34:06
-------------------------------------------
-------------------------------------------
Time: 2017-10-28 19:34:08
-------------------------------------------
(u'mmm', 1)
(u'sss', 1)
(u'ttt', 1)
-------------------------------------------
Time: 2017-10-28 19:34:10
-------------------------------------------
-------------------------------------------
Time: 2017-10-28 19:34:12
-------------------------------------------
(u'sss', 1)
(u'ttt', 1)
(u'kkk', 1)
-------------------------------------------
Time: 2017-10-28 19:34:14
-------------------------------------------
-------------------------------------------
Time: 2017-10-28 19:34:16
-------------------------------------------
(u'ppp', 1)
(u'rrr', 1)
(u'ooo', 1)
-------------------------------------------
Time: 2017-10-28 19:34:18
-------------------------------------------
(u'qqq', 1)
(u'kkk', 2)
-------------------------------------------
Time: 2017-10-28 19:34:20
-------------------------------------------
-------------------------------------------
Time: 2017-10-28 19:34:22
-------------------------------------------
[Spark][Streaming]Spark读取网络输入的例子的更多相关文章
- Spark Streaming——Spark第一代实时计算引擎
虽然SparkStreaming已经停止更新,Spark的重点也放到了 Structured Streaming ,但由于Spark版本过低或者其他技术选型问题,可能还是会选择SparkStreami ...
- spark streaming 实现接收网络传输数据进行WordCount功能
package iie.udps.example.operator.spark; import scala.Tuple2; import org.apache.spark.SparkConf; imp ...
- Spark Streaming 实现读取Kafka 生产数据
在kafka 目录下执行生产消息命令: ./kafka-console-producer --broker-list nodexx:9092 --topic 201609 在spark bin 目 ...
- 大数据技术之_19_Spark学习_04_Spark Streaming 应用解析 + Spark Streaming 概述、运行、解析 + DStream 的输入、转换、输出 + 优化
第1章 Spark Streaming 概述1.1 什么是 Spark Streaming1.2 为什么要学习 Spark Streaming1.3 Spark 与 Storm 的对比第2章 运行 S ...
- Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spa ...
- Spark学习之Spark Streaming
一.简介 许多应用需要即时处理收到的数据,例如用来实时追踪页面访问统计的应用.训练机器学习模型的应用,还有自动检测异常的应用.Spark Streaming 是 Spark 为这些应用而设计的模型.它 ...
- .Spark Streaming(上)--实时流计算Spark Streaming原理介
Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍 http://www.cnblogs.com/shishanyuan/p/474 ...
- spark streaming的理解和应用
1.Spark Streaming简介 官方网站解释:http://spark.apache.org/docs/latest/streaming-programming-guide.html 该博客转 ...
- 实时流计算Spark Streaming原理介绍
1.Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包 ...
随机推荐
- 一起来看 rxjs
更新日志 2018-05-26 校正 2016-12-03 第一版翻译 过去你错过的 Reactive Programming 的简介 你好奇于这名为Reactive Programming(反应式编 ...
- Docker系列01—容器的发展历程---Docker的生态圈
本文收录在容器技术学习系列文章总目录 Docker 和容器技术的发展可谓是日新月异,本文试图以全局的视角来梳理一下 docker 目前的生态圈.既然是概览,所以不会涉及具体的技术细节. Docker ...
- .NET Core[MVC] 利用特性捕捉异常
声明:本方式适用于MVC.本代码只适用于.NET Core MVC. 先创建一个类继承ExceptionFilterAttribute这个抽象类,并override它的方法OnException. 代 ...
- WPF StringFormat 格式化文本
StringFormat对特定数据格式的转换 WPF中,对数字/日期等的格式化,可参考此篇博客:https://www.cnblogs.com/zhengwen/archive/2010/06/19/ ...
- Java开发笔记(三十七)利用正则串分割字符串
前面介绍了处理字符串的常用方法,还有一种分割字符串的场景也很常见,也就是按照某个规则将字符串切割为若干子串.分割规则通常是指定某个分隔符,根据字符串内部的分隔符将字符串进行分割,例如逗号.空格等等都可 ...
- Java基础:Object类中的equals与hashCode方法
前言 这个系列的文章主要用来记录我在学习和复习Java基础知识的过程中遇到的一些有趣好玩的知识点,希望大家也喜欢. 一切皆对象 对于软件工程来说面向对象编程有一套完整的解决方案:OOA.OOD.O ...
- spring mvc 启动过程及源码分析
由于公司开源框架选用的spring+spring mvc + mybatis.使用这些框架,网上都有现成的案例:需要那些配置文件.每种类型的配置文件的节点该如何书写等等.如果只是需要项目能够跑起来,只 ...
- Mybatis入门之增删改查
Mybatis入门之增删改查 Mybatis如果操作成功,但是数据库没有更新那就是得添加事务了.(增删改都要添加)----- 浪费了我40多分钟怀疑人生后来去百度... 导入包: 引入配置文件: sq ...
- es6 Module语法
export 命令 1.概念 export用于定义要输出的变量(let.var.const.function.class),定义的变量与值是动态绑定关系. 2.命令格式 1. export 变量定义 ...
- CSS-蜂窝状展示区域(多个六边形)的一种实现方式
网上已经有很多关于正六边形的CSS画法,主要是利用一个矩形和前后的两个三角形组合而成. 之前在看四维图新的官网的时候,发现了一种六边形的画法,比较适合多排六边形组合成蜂窝状的展示区域(注:四维图新现在 ...