Allowed Letters

最直观的想法是贪心取, 然后网络流取check可不可行, 然后T了。

想到最大流可以等于最小割, 那么我们状压枚举字符代表的6个点连向汇点是否断掉,

然后再枚举64个本质不同的位置, 是否需要切段原点联想它的边, 单次check复杂度64 * 64

用sosdp能优化到64 * 6

#include<bits/stdc++.h>
#define LL long long
#define LD long double
#define ull unsigned long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ALL(x) (x).begin(), (x).end() using namespace std; const int N = 2e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ;
const double eps = 1e-;
const double PI = acos(-); template<class T, class S> inline void add(T& a, S b) {a += b; if(a >= mod) a -= mod;}
template<class T, class S> inline void sub(T& a, S b) {a -= b; if(a < ) a += mod;}
template<class T, class S> inline bool chkmax(T& a, S b) {return a < b ? a = b, true : false;}
template<class T, class S> inline bool chkmin(T& a, S b) {return a > b ? a = b, true : false;} int n, m, mask[N], c[N], cnt[N], sos[N];
char s[N], t[N], ans[N]; bool check() {
int sum = , ret = inf;
for(int i = ; i < ; i++) sum += c[i];
for(int i = ; i < ; i++) sos[i] = cnt[i];
for(int i = ; i < ; i++)
for(int j = ; j < ; j++)
if(j >> i & ) sos[j] += sos[j ^ ( << i)];
for(int s1 = ; s1 < ; s1++) {
int tmp = ;
for(int i = ; i < ; i++)
if(s1 >> i & ) tmp += c[i];
tmp += sum - sos[s1];
chkmin(ret, tmp);
}
return sum == ret;
} inline int getId(char c) {
return c - 'a';
} int main() {
scanf("%s", s + );
n = strlen(s + );
for(int i = ; i <= n; i++) c[getId(s[i])]++;
scanf("%d", &m);
while(m--) {
int p; scanf("%d%s", &p, t + );
for(int i = ; t[i]; i++) mask[p] |= << getId(t[i]);
}
for(int i = ; i <= n; i++) {
if(!mask[i]) mask[i] = ;
cnt[mask[i]]++;
}
for(int i = ; i <= n; i++) {
bool flag = false;
for(int j = ; j < ; j++) {
if(c[j] && mask[i] >> j & ) {
c[j]--;
cnt[mask[i]]--;
flag = check();
if(flag) {
ans[i] = 'a' + j;
break;
}
c[j]++;
cnt[mask[i]]++;
}
}
if(!flag) return puts("Impossible"), ;
}
ans[n + ] = '\0';
puts(ans + );
return ;
} /*
*/

Codeforces 1009G Allowed Letters 最大流转最小割 sosdp的更多相关文章

  1. Codeforces 1009G Allowed Letters FMT,二分图,二分图匹配,霍尔定理

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF1009G.html 题目传送门 - CF1009G 题意 给定一个长度为 $n$ 的字符串 $s$ .并给定 ...

  2. Codeforces 628F 最大流转最小割

    感觉和昨天写了的题一模一样... 这种题也能用hall定理取check, 感觉更最小割差不多. #include<bits/stdc++.h> #define LL long long # ...

  3. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) E - Goods transportation 最大流转最小割转dp

    E - Goods transportation 思路:这个最大流-> 最小割->dp好巧妙哦. #include<bits/stdc++.h> #define LL long ...

  4. 【bzoj1001】【最短路】【对偶图】【最大流转最小割】狼抓兔子题解

    [BZOJ1001]狼抓兔子 1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 18872  Solved ...

  5. Codeforces 724E Goods transportation(最小割转DP)

    [题目链接] http://codeforces.com/problemset/problem/724/E [题目大意] 每个城市有pi的物品可以运出去卖,si个物品可以买, 编号小的城市可以往编号大 ...

  6. Codeforces 786E. ALT 最小割+倍增

    E. ALT http://codeforces.com/problemset/problem/786/E 题意: 给出一棵 n 个节点的树与 m 个工人.每个工人有一条上下班路线(简单路径),一个工 ...

  7. Codeforces 1368H - Breadboard Capacity(最小割+线段树维护矩阵乘法)

    Easy version:Codeforces 题面传送门 & 洛谷题面传送门 Hard version:Codeforces 题面传送门 & 洛谷题面传送门 首先看到这种从某一种颜色 ...

  8. Yet Another Maxflow Problem CodeForces - 903G (最小割,线段树)

    大意: 两个n元素集合$A$, $B$, $A_i$与$A_{i+1}$连一条有向边, $B_i$与$B_{i+1}$连一条有向边, 给定$m$条从$A_i$连向$B_j$的有向边, 每次询问修改$A ...

  9. CodeForces E. Goods transportation【最大流+dp最小割】

    妙啊 首先暴力建图跑最大流非常简单,s向每个i连流量为p[i]的边,每个i向t连流量为s[i]的边,每个i向j连流量为c的边(i<j),但是会又T又M 考虑最大流=最小割 然后dp求最小割,设f ...

随机推荐

  1. ☆ [ZJOI2006] 书架 「平衡树维护数列」

    题目类型:平衡树 传送门:>Here< 题意:要求维护一个数列,支持:将某个元素置顶或置底,交换某元素与其前驱或后继的位置,查询编号为\(S\)的元素的排名,查询排名第\(k\)的元素编号 ...

  2. Yii2的Gridview应用技巧补充

    Yii2框架下的Gridview通常用来展示一张DB表中的数据,十分方便.这里只说一下经常要用到的一些小技巧,其实大多数官方文档都是有的,只是有可能需要在多个文档里. 自动创建的gridview示例. ...

  3. JS控制开灯关灯

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  4. 老男孩Python全栈学习 S9 日常作业 006

    1.使用循环打印以下效果: 1: * ** *** **** ***** 2: ***** **** *** ** * 3: * *** ***** ******* ********* for i i ...

  5. jQuery使用(十):jQuery实例方法之位置、坐标、图形(BOM)

    offset() position() scrollTop().scrollLeft width().height() innerWidth().outerWidth().innerHeight(). ...

  6. JS转换HTML转义符,编码及解码

    JS转换HTML转义符 //去掉html标签 function removeHtmlTab(tab) { return tab.replace(/<[^<>]+?>/g,'') ...

  7. INI配置文件的格式

    为什么要用INI文件?如果我们程序没有任何配置文件时,这样的程序对外是全封闭的,一旦程序需要修改一些参数必须要修改程序代码本身并重新编译,这样很不好,所以要用配置文件,让程序出厂后还能根据需要进行必要 ...

  8. UEditor调用上传图片、上传文件等模块

    来源:https://www.cnblogs.com/lhm166/articles/6079973.html 说到百度富文本编辑器ueditor(下面简称ue),我不得不给它一个大大的赞.我们在网站 ...

  9. 16、使用limit offset 分页时,为什么越往后翻越慢?如何解决?

    在mysql中limit可以实现快速分页,但是如果数据到了几百万时我们的limit必须优化才能有效的合理的实现分页了,否则可能卡死你的服务器哦. 当一个表数据有几百万的数据的时候成了问题! 如 * f ...

  10. Jenkins ubantu15 安装使用教程

    Jenkins  ubantu15 安装使用教程 环境:unbatu15 + java version "1.8.0_181"  +   jenkins (2.137) 命令拉取: ...