训练神经网络的过程,就是在求未知参数(权重)。让网络搭建起来,得到理想的结果。

分类-监督学习。

反向传播求权重:每一层在算偏导数。局部梯度,链式法则。

激活函数:

sigmoid仅中间段趋势良好

对复杂的神经网络(累计),会出现梯度消失、梯度爆炸

训练网络是为了求权重;

反向传播方法,更新权重;

使用的是梯度来更新,如果梯度趋近于0,

sigmoid梯度最大才0.25。

Batch Normalization

BN解决了梯度消失同时保留非线性

ICS现象(internel  shift)输入数据在每一层上分布发生了改变

神经网络初始输入要初始化,是为了落在梯度大的区间

随着网络的深入,数据落在

解决方法:移回去

一个神经网络可以解决问题最大的优势:非线性

sigmoid中,把shift移回去。中间部分类似线性了,和非线性初衷相悖。线性的网络表达能力特别差。
BN的高明之处,除了限定在一定标准差之内。拓展一下,还是以0为中心,拓宽。避免落在线性空间。
正态分布(均值影响中心位置,标准差sigma),通过控制参数来改变函数形状。

训练中直接训练BN的两个参数。

BN解决梯度消失,从而在深层网络中仍可以训练。

BN在网络中的位置:

但是层数深了还是无法避免梯度消失。

深度残差网络(Deep Residual Network )

Residual Network通过引入Skip Connection到CNN网络结构中,使得网络深度达到了千层的规模,并且其对于CNN的性能有明显的提升

参考:Skip Connection为何有效及其它 - 张俊林的博客 https://blog.csdn.net/malefactor/article/details/67637785

神经网络Batch Normalization——学习笔记的更多相关文章

  1. 深度学习(二十九)Batch Normalization 学习笔记

    Batch Normalization 学习笔记 原文地址:http://blog.csdn.net/hjimce/article/details/50866313 作者:hjimce 一.背景意义 ...

  2. Batch Normalization 学习笔记

    原文:http://blog.csdn.net/happynear/article/details/44238541 今年过年之前,MSRA和Google相继在ImagenNet图像识别数据集上报告他 ...

  3. batch normalization学习理解笔记

    batch normalization学习理解笔记 最近在Andrew Ng课程中学到了Batch Normalization相关内容,通过查阅资料和原始paper,基本上弄懂了一些算法的细节部分,现 ...

  4. 从零开始构建并编写神经网络---Keras【学习笔记】[1/2]

    Keras简介:   Keras是由纯python编写的基于theano/tensorflow的深度学习框架.   Keras是一个高层神经网络API,支持快速实验,能够把你的idea迅速转换为结果, ...

  5. 神经网络与深度学习笔记 Chapter 1.

    转载请注明出处:http://www.cnblogs.com/zhangcaiwang/p/6875533.html sigmoid neuron 微小的输入变化导致微小的输出变化,这种特性将会使得学 ...

  6. 神经网络与深度学习笔记 Chapter 6之卷积神经网络

    深度学习 Introducing convolutional networks:卷积神经网络介绍 卷积神经网络中有三个基本的概念:局部感受野(local receptive fields), 共享权重 ...

  7. 神经网络与深度学习笔记 Chapter 3.

    交叉熵 交叉熵是用于解决使用二次代价函数时当单个神经元接近饱和的时候对权重和bias权重学习的影响.这个公式可以看出,当神经元饱和的时候,sigma的偏导接近于0,w的学习也会变小.但是应用交叉熵作为 ...

  8. 神经网络与深度学习笔记 Chapter 2.

    转载请注明出处http://www.cnblogs.com/zhangcaiwang/p/6886037.html 以前都没有正儿八经地看过英文类文档,神经网络方面又没啥基础,结果第一章就花费了我将近 ...

  9. 神经网络系列学习笔记(四)——神经网络之RNN学习笔记

    不同于传统的FNNs(Feed-forward Neural Networks,前向反馈神经网络),RNNs引入了定向循环,能够处理那些输入之间前后关联的问题. RNNs的目的是用来处理序列数据. 具 ...

随机推荐

  1. (一)Hibernate初探之——单表映射

    Hibernate充当持久化层 项目结构: 一.创建项目导入jar包. hibernate-core   &  junit4       &   mysql-jdbc 二.src目录下 ...

  2. ASP.Net中后台控制页面提示信息的显示方式

    ASP.Net中后台控制页面提示信息的显示方式   用于删除或修改成功后的显示:(背景No空白) ScriptManager.RegisterStartupScript(this, typeof(Pa ...

  3. openvpn mac客户端tunnelblick连接后自动添加路由

    在openvpn 的服务器配置文件添加配置设置客户端连接后自动添加一条路由 示例: vim /etc/openvpn/server.conf # Push routes to the client t ...

  4. HttpSession 和URLRewriting

    在上面使用Cookie技术存储会话信息的时候发现Cookie存储的数据有限,而且每次需要客户端浏览器携带数据,导致网络的负载过大.因此如果需要存储相对大量的数据,那么可以直接将数据存储在服务器端,这样 ...

  5. sqlserver学习笔记(一)—— 登录本机sqlserver、启动和停止sqlserver服务、创建和删除数据库

    (重要参考:51自学网——SQL Server数据库教程) 首先按照网上教程安装好sqlserver,打开登录 登录本机sqlserver:①. ②localhost ③127.0.0.1 启动和停止 ...

  6. Linux命令-目录处理命令:rmdir

    rmdir /tmp/shijiazhuang/yuhuaqu 删除一个子目录(必须是空目录) rmdir /tmp/shijiazhuang 删除一个不为空的目录会失败

  7. 禁止IE7的页面缩放功能

    注册表键 HKEY_CURRENT_USER/Software/Microsoft/Internet Explorer/Zoom  下, 设置DWORD 值 ZoomDisabled  等于 1. 如 ...

  8. mosquitto---config.mk

    mosquitto安装时在解压压缩包后生成的文件夹中我们可以找到mosquitto主要配置文件config.mk 这个文件的主要内容: # 是否支持tcpd/libwrap功能. #WITH_WRAP ...

  9. android 屏幕上面画线

    作业如下:在android屏幕上面任意画线 package feng.f121.drawline;//本人创建的包名,每人有每人的不同的包 import java.security.PublicKey ...

  10. SeeSharpTools.JXI.DSP.Spectrum 使用

    _spectrumTask.Average.Mode = SeeSharpTools.JXI.DSP.Spectrum.SpectrumAverageMode.PeakHold; // NoAvera ...