【题意】给定仙人掌图,求最大独立集(选择最大的点集使得点间无连边)。n<=50000,m<=60000。

【算法】DFS处理仙人掌图

【题解】参考:【BZOJ】1023: [SHOI2008]cactus仙人掌图

对仙人掌进行无向图的点双连通分量Tarjan算法,树边正常DP,环边(low[y]<=dfn[x])无视。

每个环在其深度最小的点整体处理(找到(u,v)只须fa[v]≠u&&dfn[y]>dfn[x])。

DP的做法参考:【BZOJ】1040: [ZJOI2008]骑士 环套树DP

#include<cstdio>
#include<cctype>
#include<algorithm>
using namespace std;
int read(){
char c;int s=,t=;
while(!isdigit(c=getchar()))if(c=='-')t=-;
do{s=s*+c-'';}while(isdigit(c=getchar()));
return s*t;
}
const int maxn=;
struct edge{int v,from;}e[maxn*];
int n,m,tot,first[maxn],fa[maxn],f[maxn][],g[maxn][];
int dfn[maxn],low[maxn],dfsnum=;
void insert(int u,int v){tot++;e[tot].v=v;e[tot].from=first[u];first[u]=tot;} void solve(int u,int v){
int cnt=;
for(int i=v;i!=fa[u];i=fa[i]){cnt++;g[cnt][]=f[i][];g[cnt][]=f[i][];}
for(int i=;i<=cnt;i++){
g[i][]+=max(g[i-][],g[i-][]);
g[i][]+=g[i-][];
}
f[u][]=g[cnt][];
cnt=;
for(int i=v;i!=fa[u];i=fa[i]){cnt++;g[cnt][]=f[i][];g[cnt][]=f[i][];}
g[][]=-0x3f3f3f3f;
for(int i=;i<=cnt;i++){
g[i][]+=max(g[i-][],g[i-][]);
g[i][]+=g[i-][];
}
f[u][]=g[cnt][];
}
void tarjan(int x,int father){
dfn[x]=low[x]=++dfsnum;f[x][]=;f[x][]=;
for(int i=first[x];i;i=e[i].from)if(i!=father){
int y=e[i].v;
if(!dfn[y]){
fa[y]=x;
tarjan(y,i);
low[x]=min(low[x],low[y]);
}else low[x]=min(low[x],dfn[y]);
if(low[y]>dfn[x]){
f[x][]+=max(f[y][],f[y][]);
f[x][]+=f[y][];
}
}
for(int i=first[x];i;i=e[i].from)if(fa[e[i].v]!=x&&dfn[e[i].v]>dfn[x])solve(x,e[i].v);
}
int main(){
n=read();m=read();
for(int i=;i<=m;i++){
int u=read(),v=read();
insert(u,v);insert(v,u);
}
tarjan(,);
printf("%d",max(f[][],f[][]));
return ;
}

【BZOJ】4316: 小C的独立集 静态仙人掌的更多相关文章

  1. bzoj 4316: 小C的独立集【仙人掌dp】

    参考:https://www.cnblogs.com/clrs97/p/7518696.html 其实和圆方树没什么关系 设f[i][j][k]为i点选/不选,这个环的底选不选 这个底的定义是设u为这 ...

  2. BZOJ 4316: 小C的独立集 仙人掌 + 树形DP

    4316: 小C的独立集 Time Limit: 10 Sec  Memory Limit: 128 MB Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. ...

  3. BZOJ 4316: 小C的独立集 解题报告

    4316: 小C的独立集 Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点, ...

  4. BZOJ 4316: 小C的独立集

    4316: 小C的独立集 思路:先将树上的转移做好.然后环上的转移就是强制最上面的的点选或者不选,然后在环上跑一遍转移就可以了. 代码: #pragma GCC optimize(2) #pragma ...

  5. BZOJ.4316.小C的独立集(仙人掌 DP)

    题目链接 \(Description\) 求一棵仙人掌的最大独立集. \(Solution\) 如果是树,那么 \(f[i][0/1]\) 表示当前点不取/取的最大独立集大小,直接DP即可,即 \(f ...

  6. 【刷题】BZOJ 4316 小C的独立集

    Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使 ...

  7. 【BZOJ4316】小C的独立集(仙人掌,动态规划)

    [BZOJ4316]小C的独立集(仙人掌,动态规划) 题面 BZOJ 题解 除了普通的动态规划以外,这题还可以用仙人掌的做法来做. 这里没有必要把圆方树给建立出来 \(Tarjan\)的本质其实就是一 ...

  8. BZOJ4316 小C的独立集 【仙人掌】

    题目 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使取出的点尽量多. ...

  9. 2019.02.07 bzoj4316: 小C的独立集(仙人掌+树形dp)

    传送门 题意:给出一个仙人掌森林求其最大独立集. 思路:如果没有环可以用经典的树形dpdpdp解决. fi,0/1f_{i,0/1}fi,0/1​表示第iii个点不选/选的最大独立集. 然后fi,0+ ...

随机推荐

  1. Struts2(四)

    以下内容是基于导入struts2-2.3.32.jar包来讲的 1.struts2配置文件加载的顺序 struts2的StrutsPrepareAndExecuteFilter拦截器中对Dispatc ...

  2. 奇异值分解(SVD)原理详解及推导 (转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

  3. inux下mysql的root密码忘记解决方法

    1.首先确认服务器出于安全的状态,也就是没有人能够任意地连接MySQL数据库. 因为在重新设置MySQL的root密码的期间,MySQL数据库完全出于没有密码保护的 状态下,其他的用户也可以任意地登录 ...

  4. Geek荣耀大会总结

    0.0 首先没有被抽中, 其次可乐真难喝,再次我没有去拍无人机合影,再再次还是很受打击的. 1.0 其实 对geek 和1024大会无感,主要原因 没有三倍加班费的节日在我眼里都不是节日. 上面只是简 ...

  5. nodejs之Buffer

    Buffer是什么? 简单点理解,buff就是固定长度的uint8array.(es6已实现TypedArray). 由于是固定长度所以没有了splice,concat方法. 由于是固定类型所以没有了 ...

  6. 我的系统资源呢?php-fpm你知道吗?

    1:别的先不管咱们top一下.看看咱们的cpu ram swap的使用情况 由上图分析,可以看出共有602个进程,其中有601个进程休眠了.这好像有点不对劲,内核进程也就80个左右,加上memcach ...

  7. oracle 关于表数据delete 后如何恢复

    今天在PL/SQL中操作不小心删掉了某个表的部分数据,这可吓坏了本猿:于是悄悄的打开电脑,赶紧找度娘帮忙.经过度娘的小爬虫帮助,几分钟就把数据恢复了. 那么表数据delete掉后怎么恢复呢? 用fla ...

  8. eclipse错误:Access restriction: The type 'BASE64Decoder' is not API

    Access restriction: The type ‘BASE64Decoder’ is not API (restriction on required library ‘D:\java\jd ...

  9. Jquery简单实现Datepicker

    cshtml: <input type="text" id="purchaseDate" name="PurchaseDate" va ...

  10. EM算法[转]

    最大期望算法:EM算法. 在统计计算中,最大期望算法(EM)是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量. 最大期望算法经过两个步骤交替进行计算: 第 ...