总结:

1. 第 36 行代码, 最好是按照 len 来遍历, 而不是下标

代码: 前序中序

#include <iostream>
#include <vector>
using namespace std; struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
}; class Solution {
public:
vector<int> preorder, inorder;
TreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {
TreeNode * root = NULL;
if(preorder.size() == 0 || inorder.size() == 0)
return root; this->preorder = preorder;
this->inorder = inorder;
for(int i = 0; i < inorder.size(); i ++) {
if(inorder[i] == preorder[0]) {
root = new TreeNode(preorder[0]);
int len1 = i;
int len2 = inorder.size()-i-1;
root->left = buildParty(1,0, len1);
root->right = buildParty(len1+1, i+1, len2);
return root;
}
}
}
TreeNode *buildParty(const int &p, const int &i, const int &len) {
if(len <= 0)
return NULL;
for(int cursor = 0; cursor < len; cursor++) {
int pos = cursor+i; if(inorder[pos] == preorder[p]) {
TreeNode *root = new TreeNode(preorder[p]);
int len1 = cursor;
int len2 = len-cursor-1;
root->left = buildParty(p+1, i, len1);
root->right = buildParty(p+len1+1, pos+1, len2);
return root;
}
}
}
}; int main() {
TreeNode *node; int in1[10] = {1, 2, 3, 4, 5, 6};
int in2[10] = {3, 2, 4, 1, 5, 6}; Solution solution;
node = solution.buildTree(vector<int>(in1, in1+6), vector<int>(in2, in2+6));
return 0;
}

  

代码: 中序后序

#include <iostream>
#include <vector>
using namespace std; struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
}; class Solution {
public:
vector<int> inorder;
vector<int> postorder;
TreeNode *buildTree(vector<int> &inorder, vector<int> &postorder) {
TreeNode *root = NULL;
if(!inorder.size())
return root; this->inorder = inorder;
this->postorder = postorder; for(int ci = 0; ci < inorder.size(); ci++) {
if(inorder[ci] == postorder[postorder.size()-1]) {
root = new TreeNode(inorder[ci]);
int len1 = ci;
int len2 = inorder.size()-ci-1;
root->left = buildParty(0, postorder.size()-len2-2, len1);
root->right = buildParty(ci+1, postorder.size()-2, len2);
return root;
} }
}
TreeNode *buildParty(const int &i, const int &j, const int &len) {
if(!len)
return NULL; for(int ci = 0; ci < len; ci ++) {
int pos = i+ci;
if(postorder[j] == inorder[pos]) {
TreeNode *root = new TreeNode(inorder[pos]);
int len1 = ci;
int len2 = len-ci-1;
root->left = buildParty(i, j-len2-1, len1);
root->right = buildParty(i+ci+1, j-1, len2);
return root;
}
}
}
}; int main() {
TreeNode *node; int in1[10] = {3, 2, 4, 1, 5, 6};
int in2[10] = {3, 4, 2, 6, 5, 1}; Solution solution;
node = solution.buildTree(vector<int>(in1, in1+6), vector<int>(in2, in2+6));
return 0;
}

  

Leetcode: Construct Binary Tree from Preorder and Inorder Traversal, Construct Binary Tree from Inorder and Postorder Traversal的更多相关文章

  1. [LeetCode] Construct Binary Tree from Preorder and Inorder Traversal 由先序和中序遍历建立二叉树

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  2. 【LeetCode OJ】Construct Binary Tree from Preorder and Inorder Traversal

    Problem Link: https://oj.leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-trave ...

  3. LeetCode:Construct Binary Tree from Inorder and Postorder Traversal,Construct Binary Tree from Preorder and Inorder Traversal

    LeetCode:Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder trav ...

  4. LeetCode 105. Construct Binary Tree from Preorder and Inorder Traversal (用先序和中序树遍历来建立二叉树)

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  5. 【一天一道LeetCode】#105. Construct Binary Tree from Preorder and Inorder Traversal

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 来源:http ...

  6. (二叉树 递归) leetcode 105. Construct Binary Tree from Preorder and Inorder Traversal

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  7. [LeetCode] 105. Construct Binary Tree from Preorder and Inorder Traversal 由先序和中序遍历建立二叉树

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  8. 【LeetCode】105. Construct Binary Tree from Preorder and Inorder Traversal 从前序与中序遍历序列构造二叉树(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 日期 题目地址:https://leetcod ...

  9. Leetcode Construct Binary Tree from Preorder and Inorder Traversal

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  10. Construct Binary Tree from Preorder and Inorder Traversal [LeetCode]

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

随机推荐

  1. C# 之 FTPserver中文件上传与下载(一)

            近期接手这样一个文件上传到ftpserver的一个功能,接下来就给大家解析一下这一功能. 首先,今天我们要讲的是怎么创建一个FTPserver. 1.首先我们创建一个用户,当然不想创建 ...

  2. dbutil组件的常见用法

    该工具包主要用来操作数据库,进行增删改查.将结果包装到对象或对象集合中. 在写web项目的时候,经常会涉及到数据库的操作.比如连接数据库获取连接对象.执行sql语句.获得结果.如果对每一个方法都写这么 ...

  3. SPD

    一般是在内存条上的.1.SPD是SERIAL PRESENCE DETECT的缩写,中文意思是模组存在的串行检测.也即是通过上面讲的IIC串行接口的EEPROM对内存插槽中的模组存在的信息检查.这样的 ...

  4. UIScrollView 滚动视图—IOS开发

    转自:http://blog.csdn.net/iukey/article/details/7319314 UIScrollView 类负责所有基于 UIKit 的滚动操作. 一.创建 CGRect  ...

  5. 计算机图形学(一) 视频显示设备_1_CRT原理

    第 1 章 图形系统概述        如今.计算机图形学的作用与应用已经得到了广泛承认.大量的图形硬件和软件系统已经应用 到了差点儿全部的领域.通用计算机甚至很多手持计算器也已经普遍具备 二维及三维 ...

  6. JQM事件详解

    在前文<使用 jQuery Mobile 与 HTML5 开发 Web App —— jQuery Mobile 默认配置与事件基础>中,Kayo 对 jQuery Mobile 事件的基 ...

  7. Spring学习10-SpringMVC原理及核心组件1

    一.SpringMVC原理     请求到来时,第一个接受这个请求的前端控制器叫DispatcherServlet(这个需要在web.xml中配置), 后端控制器叫Controller.负责处理请求U ...

  8. Nginx 使用中文URL,中文目录路径

    Nginx 使用中文URL,中文目录路径 分类: linux2012-05-03 11:04 2672人阅读 评论(0) 收藏 举报 nginxurl服务器translationcentosserve ...

  9. 电影大全 API接口

    http://www.apix.cn/services/show/29 http://www.apix.cn/services/show/112

  10. 每日英语:A Better Way To Treat Anxiety

    Getting up the nerve to order in a coffee shop used to be difficult for 16-year-old Georgiann Steely ...