P4
在我们所研究的模型中,决策主体往往要在不确定条件下进行决策。参与人可能:

  • 不能确定环境的客观因素;
  • 对博弈中发生的事件不很清楚;
  • 不能确定别的不确定参与人的行动;
  • 不能确定别的参与人的推理。
    为了对不确定情形下的决策建模,几乎所有的博弈论都是用了von Neuman和Morgenstern(1994)及Savage(1972)的理论。也就是,如果结果函数是随机的并被决策主体已知(即,对每一个\(a \in A\), 结果\(g(a)\)是集合\(C\)上的一个不确定事件(概率分布),那么决策主体就被认为是为了最大化一个函数期望值(v-N-M效用)去行动,这个函数给每个结果赋一个值。如果行动与结果间的随机联系未给定,这个决策主体就被认为是按他心中的一个(主观的)概率分布去行动,这个分布决定了任何行动的结果。在这种情形下决策主体被认为将这种行动,即他心中有一个“状态空间”\(\Omega\), 一个\(\Omega\)上的一个概率测度,一个函数\(g : A \times \Omega \to C\), 和一个效用函数\(u : C \to \mathbb{R}\); 他被认为考虑到概率测度去选择一个行动\(a\)来最大化期望值\(u(g(a, \omega))\).--
    P6 : 术语与标记--
    如果对所有\(x \in \mathbb{R}, x^' \in \mathbb{R}\)及\(a \in [0, 1], f(ax + (1 - a)x^') \geq af(x) + (1 - a)f(x^')\), 则函数\(f : \mathbb{R} \to \mathbb{R}\)为一个凹函数。给定一个函数\(f : X \to \mathbb{R}\), 我们用\(arg max_{x \in X}f(x)\)表示\(f\)的最大值集合,对任何\(Y \subseteq X\), 用\(f(Y)表示集合{f(x) : x \in Y}. 我们用N表示参与人集合。将某个变量的值的集合(每个参与人都对应一个)作为一个*组合*(profile), 用\)(x_i){i \in N)\(表示。或者,假定两次“\)i \in N\(”是确定的,则简单几位\)(x_i)\(. 给定列表\)x{-i} = (x_j){j \in N \diagdown {i}}\(和一个元素\)x_i\(, 我们用\)(x{-i}, x_i)\(表示组合\)(x_i){i \in N}\(. 如果对每个\)i \in N, \textbf{X}i\(是一个集合, 则我们用\)\textbf{X}{-i}\(表示集合\)\times{i \in N \diagdown {i}}\textbf{X}_j$.

博弈论教程(A Course in Game Theory)摘录的更多相关文章

  1. 如何搭建一个独立博客——简明Github Pages与Hexo教程

    摘要:这是一篇很详尽的独立博客搭建教程,里面介绍了域名注册.DNS设置.github和Hexo设置等过程,这是我写得最长的一篇教程.我想将我搭建独立博客的过程在一篇文章中尽可能详细地写出来,希望能给后 ...

  2. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  3. 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)

    ##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...

  4. Linux C 收藏

    某招聘要求:熟悉高性能分布式网络服务端设计开发,熟悉epoll.多线程.异步IO.事件驱动等服务端技术: <UNIX环境高级编程(第3版)>apue.h等源码文件的编译安装 <UNI ...

  5. 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)

    Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...

  6. ArcGIS学习推荐基础教程摘录

    ###########-------------------摘录一--------------------------########### ***************************** ...

  7. 博弈论(Game Theory) - 04 - 纳什均衡

    博弈论(Game Theory) - 04 - 纳什均衡 开始 纳什均衡和最大最小定理是博弈论的两大基石. 博弈不仅仅是对抗,也包括合作和迁就,纳什均衡能够解决这些问题,提供了在数学上一个完美的理论. ...

  8. 博弈论(Game Theory) - 01 - 前传之占优战略均衡

    博弈论(Game Theory) - 01 - 前传之占优战略均衡 开始 我们现在准备攀爬博弈论的几座高峰. 我们先看看在纳什均衡产生之前,博弈论的发展情况. 我们的第一座高峰是占优战略均衡. 囚徒困 ...

  9. 博弈论(Game Theory) - 02 - 前传之重复剔除严格劣战略的占优战略均衡

    博弈论(Game Theory) - 02 - 前传之重复剔除严格劣战略的占优战略均衡 开始 "重复剔除劣战略的严格占优战略均衡"(iterated dominance equil ...

随机推荐

  1. IDEA04 工具窗口管理、各种跳转、高效定位、行操作、列操作、live template、postfix、alt enter、重构、git使用

    1 工具窗口管理 所有的窗口都是在view -> tools windows 下面的,这些窗口可以放在IDEA的上下左右各个位置:右键某个窗口后选择move to 即可进行位置调整 2 跳转 2 ...

  2. 基于Linux服务器的性能分析与优化

    作为一名Linux系统管理员,最主要的工作是优化系统配置,使应用在系统上以最优的状态运行,但硬件问题.软件问题.网络环境等的复杂性和多变性,导致了对系统的优化变得异常复杂,如何定位性能问题出在哪个方面 ...

  3. hive1.2.1问题集锦

    1.启动hive报错: Logging initialized using configuration in jar:file:/usr/local/hive-1.2.1/lib/hive-commo ...

  4. crm第一天

    课程由1-7组成 自己实现的代码: 教程:

  5. Mysql加载本地CSV文件

    Mysql加载本地CSV文件 1.系统环境 系统版本:Win10 64位 Mysql版本: 8.0.15 MySQL Community Server - GPL Mysql Workbench版本: ...

  6. [GO]使用select实现斐波那契

    package main import "fmt" func fibonacci(ch chan <- int, quit <- chan bool) { x, y : ...

  7. 【转】Eclipse中10个最有用的快捷键组合

    转载地址:http://blog.csdn.net/seebetpro/article/details/46227005 一个Eclipse骨灰级开发者总结了他认为最有用但又不太为人所知的快捷键组合. ...

  8. js的常用方法

    var Jade = {}; Jade.util = { addEvent: function (target, eventType, eventHandle, param) { //deal par ...

  9. ASP.NET MVC中的控制器激活与反射之间的联系(帮助理解)

    ASP.NET Mvc是ASP.NET的一个框架,同样也是基于管道的设计结构.HttpModule和HttpHandler是ASP.NET的两个重要组件,同样的在Mvc中也是非常重要的组件.在应用程序 ...

  10. 如何轻松学习C语言编程!

    C语言是面向过程的,而C++是面向对象的 C和C++的区别: C是一个结构化语言,它的重点在于算法和数据结构.C程序的设计首要考虑的是如何通过一个过程,对输入(或环境条件)进行运算处理得到输出(或实现 ...