luogu4383 [八省联考2018]林克卡特树(带权二分+dp)
题目大意:给定你 n 个点的一棵树 (边有边权,边权有正负)
你需要移除 k 条边,并连接 k 条权值为 0 的边,使得连接之后树的直径最大
题解:
根据 [POI2015]MOD 那道题,显然我们应该找 k+1 条树上不相交的链,求这些链的长度之和最大值
k = 0 部分分:直接求树的直径
k = 1 部分分:把 MOD 那道题 或者点头网那个第一题粘过来就行了
k <= 100 部分分:我们也考虑树形dp
由于我们只需要把长度累加,我们考虑设 f[i][j][0/1/2] 代表以 i 为根的子树中出现了 j 条链, i 的度数为 0/1/2 的子树链的长度和的最大值 xjb 背包下就行, 复杂度 O (n * k * k)
k == 10000
我们设 \(f(x) = f[1][x][0]\), 即钦定链的数量为 x 时的 dp 结果,最后我们要求的答案就是\(f(k + 1)\)
根据莫名其妙的原因,\(f(x)\) 是单峰函数 并且有最大值
显然我们无法在 \(O(n)\) 的时间复杂度内求出这个值。
我们可以考虑给定一个斜率 \(k\),假设求这个斜率的直线与 \(f(x)\) 图像的切点的坐标很容易,我们就可以发现
假设切点是 \((x_0, f(x_0))\), 那么 \(k\) 和 \(x_0\) 之间是一个单调的关系。
根据斜率是单调的这一性质,我们可以考虑二分斜率,每次求出斜率为 mid 时对应的切点位置,如果切点在需要求的 \(k\) 的左边,我们考虑减小斜率,否则考虑增大斜率。
至于怎么求出切点坐标,我们发现 用斜率为 \(k\) 的直线去切曲线 \(f(x)\) 就相当于 用斜率为 0 的直线去切曲线 \(f(x) - kx\),也就是求 \(f(x) - kx\) 的极值点
我们考虑在 dp 时候解除第二维直径数量的限制,反而在 dp 的值中去维护取得最优解时的链的数量, 并且在每加入一条链时在答案贡献中 -= 二分的斜率 k, 最后得到的答案对应的链的数量即为 x, 答案 + k * x 即为 y
#include <cstdio>
#include <vector>
using namespace std;
int n, k;
vector<pair<int, int>> out[300010];
long long mid, ans, pos;
struct dat { int k; long long val; } f[300010][3];
bool operator<(const dat &a, const dat &b) { return a.val != b.val ? (a.val < b.val) : (a.k > b.k); }
dat operator+(const dat &a, const dat &b) { return (dat){a.k + b.k, a.val + b.val}; }
void dfs(int x, int fa)
{
f[x][0] = (dat){0, 0}, f[x][1] = (dat){0, 0}, f[x][2] = (dat){1, -mid};
for (pair<int, int> i : out[x]) if (i.first != fa)
{
int v = i.first; dfs(v, x);
f[x][2] = max(f[x][2] + f[v][0], f[x][1] + f[v][1] + (dat){1, i.second - mid});
f[x][1] = max(f[x][1] + f[v][0], f[x][0] + f[v][1] + (dat){0, i.second});
f[x][0] = f[x][0] + f[v][0];
}
f[x][0] = max(f[x][0], max(f[x][2], f[x][1] + (dat){1, -mid}));
}
long long check()
{
dfs(1, 0), ans = f[1][0].val;
return pos = f[1][0].k;
}
int main()
{
scanf("%d%d", &n, &k), k++;
for (int x, y, z, i = 1; i < n; i++)
{
scanf("%d%d%d", &x, &y, &z);
out[x].push_back(make_pair(y, z));
out[y].push_back(make_pair(x, z));
}
long long l = -1e12, r = -l;
while (l < r)
{
mid = (l + r) >> 1;
if (check() >= k) l = mid + 1;
else r = mid;
}
mid = l, check();
printf("%lld\n", ans + l * k);
return 0;
}
luogu4383 [八省联考2018]林克卡特树(带权二分+dp)的更多相关文章
- [八省联考2018]林克卡特树lct——WQS二分
[八省联考2018]林克卡特树lct 一看这种题就不是lct... 除了直径好拿分,别的都难做. 所以必须转化 突破口在于:连“0”边 对于k=0,我们求直径 k=1,对于(p,q)一定是从p出发,走 ...
- LuoguP4383 [八省联考2018]林克卡特树lct
LuoguP4383 [八省联考2018]林克卡特树lct https://www.luogu.org/problemnew/show/P4383 分析: 题意等价于选择\(K\)条点不相交的链,使得 ...
- luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分)
luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分) Luogu 题解时间 $ k $ 条边权为 $ 0 $ 的边. 是的,边权为零. 转化成选正好 $ k+1 $ 条链. $ ...
- P4383 [八省联考2018]林克卡特树 树形dp Wqs二分
LINK:林克卡特树 作为树形dp 这道题已经属于不容易的级别了. 套上了Wqs二分 (反而更简单了 大雾 容易想到还是对树进行联通情况的dp 然后最后结果总和为各个联通块内的直径. \(f_{i,j ...
- 洛谷P4383 [八省联考2018]林克卡特树lct(DP凸优化/wqs二分)
题目描述 小L 最近沉迷于塞尔达传说:荒野之息(The Legend of Zelda: Breath of The Wild)无法自拔,他尤其喜欢游戏中的迷你挑战. 游戏中有一个叫做“LCT” 的挑 ...
- [八省联考2018]林克卡特树lct
题解: zhcs的那个题基本上就是抄这个题的,不过背包的分数变成了70分.. 不过得分开来写..因为两个数组不能同时满足 背包的话就是 $f[i][j][0/1]$表示考虑i子树,取j条链,能不能向上 ...
- BZOJ5252 八省联考2018林克卡特树(动态规划+wqs二分)
假设已经linkcut完了树,答案显然是树的直径.那么考虑这条直径在原树中是怎样的.容易想到其是由原树中恰好k+1条点不相交的链(包括单个点)拼接而成的.因为这样的链显然可以通过linkcut拼接起来 ...
- 洛谷 4383 [八省联考2018]林克卡特树lct——树形DP+带权二分
题目:https://www.luogu.org/problemnew/show/P4383 关于带权二分:https://www.cnblogs.com/flashhu/p/9480669.html ...
- 洛谷.4383.[八省联考2018]林克卡特树lct(树形DP 带权二分)
题目链接 \(Description\) 给定一棵边带权的树.求删掉K条边.再连上K条权为0的边后,新树的最大直径. \(n,K\leq3\times10^5\). \(Solution\) 题目可以 ...
随机推荐
- DBArtist之Oracle入门第2步: 了解Oracle的Database Control
之前安装好数据库后,会有下面这个弹窗,然后根据Database Control URL地址进入瞧一瞧,看一看! 根据地址进入以后,是一个登录界面,用system账户登录,密码就是安装Oracle的时候 ...
- DecoratorPattern(23种设计模式之一)
参考书籍:设计模式-可复用面向对象软件基础(黑皮书) 书中写到,装饰者模式的意图是动态的给对象添加一些额外的职责.就增加功能来说,Decorator模式相比生成子类更为灵活.装饰者模式的另一个别名是包 ...
- 三个参数,对mysql存储限制的影响
1.max_allowed_packet 这个参数会影响单此插入或读取的包的大小,一般和blob字段共用,但要注意一点是这个参数好像是分服务端与客户端的,如果想输出大字段的内容,则在用客户端链接服务 ...
- spark reduceByKey
reduce(binary_function) reduce将RDD中元素前两个传给输入函数,产生一个新的return值,新产生的return值与RDD中下一个元素(第三个元素)组成两个元素,再被传给 ...
- easyui combogrid 多选加载,保存,显示代码
1.调用代码 UTIL.SetDict($("#txt_ExcludeIndustry_"), "SECTOR_TYPE", true, true, funct ...
- 黑盒测试实践-任务进度-Day04
任务进度11-29 使用工具 selenium 小组成员 华同学.郭同学.穆同学.沈同学.覃同学.刘同学 任务进度 经过了前两天的学习任务的安排,以下是大家的任务进度: 华同学(任务1) 1.和其他小 ...
- DapperExtensions 使用教程
最近搭建一个框架,使用dapper来做数据库访问,数据是sql server2012,支持多个数据库.事务.orm.ado.net原生操作方式,非常方便. 使用dapper的原因网上有很多文章说明,这 ...
- Win10安装Mongodb,并配置成服务
好吧,今天突然发现新买的surface上没有安装mongodb,然后想着安装一下,顺便记录一下,虽说安装过程很简单 一:下载安装,然后拷贝到C盘根目录,这个就不多说了,比QQ都简单. 二:把bin文件 ...
- 新年奉献MVC+EF(CODEFIRST)+EASYUI医药MIS系统(转)
出处:http://www.cnblogs.com/chenlinzhi/p/4332628.html 本人闲来无事就把以前用Asp.net做过的一个医药管理信息系统用mvc,ef ,easyui重新 ...
- [GO]使用map生成 json
package main import ( "encoding/json" "fmt" ) func main() { m := make(map[) //因为 ...