【题目大意】

【思路】

基本是popoqqq大爷的题解,稍微添加了几句自己的注释,方便理解

同理,如果n%k+m%k<k等价于0

=∑([(n+m)/k]-[n/k]-[m/k])×φ(k) ……因为k不满足条件的时候前面为0

……其实右边两个∑也是k=1..(m+n),但是k>n的时候,[n/k]显然为0,m同理。

【错误点XXXXD】

……程序烧杯,po也是烧杯。不要忘了ll,不要忘了MOD……

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define MOD 998244353
using namespace std;
typedef long long ll; ll phi(ll x)
{
ll ret=x;
for (ll i=;i*i<=x;i++)
{
if (x%i==)
{
ret-=ret/i;
while (x%i==) x/=i;
}
}
if (x>) ret-=ret/x;
return ret%MOD;
} void solve()
{
ll n,m;
scanf("%lld%lld",&n,&m);
printf("%lld",(phi(n)%MOD)*(phi(m)%MOD)%MOD*(n%MOD)%MOD*(m%MOD)%MOD);
} int main()
{
solve();
return ;
}

          

【欧拉函数】BZOJ4173-数学的更多相关文章

  1. Java实现 蓝桥杯 算法提高 欧拉函数(数学)

    试题 算法提高 欧拉函数 问题描述 老师出了一道难题,小酱不会做,请你编个程序帮帮他,奖金一瓶酱油: 从1-n中有多少个数与n互质? |||||╭══╮ ┌═════┐ ╭╯让路║═║酱油专用车║ ╰ ...

  2. GCD - Extreme (II) UVA - 11426 欧拉函数_数学推导

    Code: #include<cstdio> using namespace std; const int maxn=4000005; const int R=4000002; const ...

  3. 【BZOJ4173】数学 欧拉函数神题

    [BZOJ4173]数学 Description Input 输入文件的第一行输入两个正整数 . Output 如题 Sample Input 5 6 Sample Output 240 HINT N ...

  4. UVaLive 7362 Farey (数学,欧拉函数)

    题意:给定一个数 n,问你0<= a <=n, 0 <= b <= n,有多少个不同的最简分数. 析:这是一个欧拉函数题,由于当时背不过模板,又不让看书,我就暴力了一下,竟然A ...

  5. 数学之欧拉函数 &几道poj欧拉题

    欧拉函数总结+证明 欧拉函数总结2 POJ 1284 原根 #include<iostream> #include<cstdio> #include<cstring> ...

  6. NOIP模拟:切蛋糕(数学欧拉函数)

    题目描述  BG 有一块细长的蛋糕,长度为 n. 有一些人要来 BG 家里吃蛋糕, BG 把蛋糕切成了若干块(整数长度),然后分给这些人. 为了公平,每个人得到的蛋糕长度和必须相等,且必须是连续的一段 ...

  7. UVA 11426 - GCD - Extreme (II) 欧拉函数-数学

    Given the value of N, you will have to find the value of G. The definition of G is given below:G =i< ...

  8. 数学知识-欧拉函数&快速幂

    欧拉函数 定义 对于正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目,记作φ(n). 算法思路 既然求解每个数的欧拉函数,都需要知道他的质因子,而不需要个数 因此,我们只需求出他的质因子, ...

  9. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  10. COGS2531. [HZOI 2016]函数的美 打表+欧拉函数

    题目:http://cogs.pw/cogs/problem/problem.php?pid=2533 这道题考察打表观察规律. 发现对f的定义实际是递归式的 f(n,k) = f(0,f(n-1,k ...

随机推荐

  1. tp修改的写法

  2. 好消息! 不用再羡慕Python有jupyter 我R也有Notebook了【附演示视频】

    熟悉python的朋友可能知道jupyter notebook.它是一个Web应用程序,允许你创建和共享代码,方程,可视化和说明性文本文档.现在,我们可以在RStudio中实现R Notebook的功 ...

  3. oracle imp dmp命令

    vi par.txt userid=system/oracle tables=(user.table,...) query="where org_no like 32%" file ...

  4. redis基础之redis-cluster(集群)(七)

    前言 redis的主流高可用集群模式为redis-cluster.从redis3.0+版本后开始支持,自带集群管理工具redis-trib.rb. 安装redis 参考:https://www.cnb ...

  5. windows和linux修改python的pip源

    python的pip安装包非常方便,然而其默认的镜像源在国外,下载的速度非常慢,推荐改成国内的镜像源. window平台修改pip源 找到系统盘下C:\C:\Users\用户名\AppData\Roa ...

  6. 【BubbleCup X】F:Product transformation

    按照题解的规律,首先能看出前面每个数幂次的性质. 然后发掘约数的性质 #include<bits/stdc++.h> ; typedef long long ll; using names ...

  7. 使用正则表达式匹配IP地址

    IP地址分为4段,以点号分隔.要对IP地址进行匹配,首先要对其进行分析,分成如下部分,分别进行匹配:   第一步:地址分析,正则初判 1.0-9 \d 进行匹配 2.10-99 [1-9]\d 进行匹 ...

  8. 设计模式(一)工厂模式Factory(创建型)(转)

    原文链接:http://blog.csdn.net/hguisu/article/details/7505909 设计模式一 工厂模式Factory 在面向对象编程中, 最通常的方法是一个new操作符 ...

  9. List基本用法

    List最为Collection接口的子接口,当然可以使用Collection接口里的全部方法.而且由于List是有序集合,因此List集合里增加了一些根据索引来操作集合元素的方法: public c ...

  10. beego学习笔记(4):开发文档阅读(2)

    bee工具的安装和使用 bee 工具是一个为了协助快速开发 beego 项目而创建的项目,通过 bee 您可以很容易的进行 beego 项目的创建.热编译.开发.测试.和部署. go get gith ...