代码:

//根据Burnside定理:有m个置换k钟颜色,所有本质不同的染色方案数就是每种置换的不变元素的个数的平均数。所谓不变元素就是一种染色方案
//经过置换变换后和之前一样。所以现在就是要求不变元素的个数,要想变换后和之前一样那么改置换的循环节中一定是同一种颜色,所以现在就
//是要求每个置换的循环节然后求出每个循环节染同一种颜色的方案数。因为只有3种颜色可以用三维的01背包求方案数。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
int sr,sb,sg,n,m,p,a[][];
ll f[][][];
ll solve(int x)
{
bool vis[];
int b[],sum=;
memset(vis,,sizeof(vis));
for(int i=;i<=n;i++){
if(!vis[a[x][i]]){
b[++sum]=;
vis[a[x][i]]=;
int y=a[x][i];
while(!vis[a[x][y]]){
b[sum]++;
vis[a[x][y]]=;
y=a[x][y];
}
}
}
memset(f,,sizeof(f));
f[][][]=;
for(int h=;h<=sum;h++)
for(int i=sr;i>=;i--){
for(int j=sb;j>=;j--){
for(int k=sg;k>=;k--){
if(i>=b[h]) f[i][j][k]=(f[i][j][k]+f[i-b[h]][j][k])%p;
if(j>=b[h]) f[i][j][k]=(f[i][j][k]+f[i][j-b[h]][k])%p;
if(k>=b[h]) f[i][j][k]=(f[i][j][k]+f[i][j][k-b[h]])%p;
}
}
}
return f[sr][sb][sg];
}
ll pow_mod(int a,int b)
{
if(b==) return ;
ll x=pow_mod(a,b/);
x=x*x%p;
if(b&) x=x*a%p;
return x;
}
int main()
{
scanf("%d%d%d%d%d",&sr,&sb,&sg,&m,&p);
n=sr+sb+sg;
for(int i=;i<=m;i++)
for(int j=;j<=n;j++)
scanf("%d",&a[i][j]);
m++;
for(int j=;j<=n;j++) a[m][j]=j;
ll ans=;
for(int i=;i<=m;i++)
ans=(ans+solve(i))%p;
ans=(ans*pow_mod(m,p-))%p;
printf("%lld\n",ans);
return ;
}

bzoj 1004 组合的更多相关文章

  1. [BZOJ 1004] [HNOI2008] Cards 【Burnside引理 + DP】

    题目链接:BZOJ - 1004 题目分析 首先,几个定义和定理引理: 群:G是一个集合,*是定义在这个集合上的一个运算. 如果满足以下性质,那么(G, *)是一个群. 1)封闭性,对于任意 a, b ...

  2. bzoj 1004 [HNOI2008]Cards && poj 2409 Let it Bead ——置换群

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 http://poj.org/problem?id=2409 学习材料:https:/ ...

  3. bzoj 1004 Cards 组合计数

    这道题考察的是组合计数(用Burnside,当然也可以认为是Polya的变形,毕竟Polya是Burnside推导出来的). 这一类问题的本质是计算置换群(A,P)中不动点个数!(所谓不动点,是一个二 ...

  4. bzoj 1004 Cards

    1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有 多少种染色方案,Sun ...

  5. BZOJ 1004: [HNOI2008]Cards

    Description 给你一个序列,和m种可以使用多次的置换,用3种颜色染色,求方案数%p. Sol Burnside定理+背包. Burnside定理 \(N(G,\mathbb{C})=\fra ...

  6. [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...

  7. BZOJ 1004 Cards(Burnside引理+DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1004 题意:三种颜色的扑克牌各有Sr,Sb,Sg张.给出m种置换.两种染色方案在某种置换 ...

  8. bzoj 1004 1004: [HNOI2008]Cards burnside定理

    1004: [HNOI2008]Cards Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1668  Solved: 978[Submit][Stat ...

  9. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

随机推荐

  1. 大数据-spark-hbase-hive等学习视频资料

    不错的大数据spark学习资料,连接过期在评论区评论,再给你分享 https://pan.baidu.com/s/1ts6RNuFpsnc39tL3jetTkg

  2. ES6的新特性(21)——Proxy

    Proxy 概述 Proxy 用于修改某些操作的默认行为,等同于在语言层面做出修改,所以属于一种“元编程”(meta programming),即对编程语言进行编程. Proxy 可以理解成,在目标对 ...

  3. 英文Datasheet没那么难读

    话说学好数理化,走遍天下都不怕.可是在这个所谓的全球化时代,真要走遍天下的话,数理化还真未必比得上一门外语.作为技术人员,可以看到的是目前多数前沿的产品和技术多来自发达的欧美等国家,而英语目前才是真正 ...

  4. “取件帮”微信小程序宣传视频链接及内容介绍

    1.视频链接 视频上传至优酷自频道,地址链接:http://v.youku.com/v_show/id_XMzg2NTM3OTc5Ng==.html?spm=a2hzp.8253869.0.0 2.视 ...

  5. Linux发行版本应用场景

    如果你是一个Linux爱好者,想选择一个桌面系统,并且既不想用盗版,又不想花太多钱购买商业系统软件,那么可以选择Ubuntu桌面系统.如果你需要服务器端的Linux系统,想用一个比较稳定的服务器系统, ...

  6. Rsyslog的三种传输协议简要介绍

    rsyslog的三种传输协议 rsyslog 可以理解为多线程增强版的syslog. rsyslog提供了三种远程传输协议,分别是: 1. UDP 传输协议 基于传统UDP协议进行远程日志传输,也是传 ...

  7. 简述Java中Http/Https请求监听方法

    一.工欲善其事必先利其器 做Web开发的人总免不了与Http/Https请求打交道,很多时候我们都希望能够直观的的看到我们发送的请求参数和服务器返回的响应信息,这个时候就需要借助于某些工具啦.本文将采 ...

  8. 3dContactPointAnnotationTool开发日志(三三)

      添加背景图片后发现Runtime Transform Gizmo无法选中物体了:   于是改了一下EditorObjectSelection.cs中的WereAnyUIElementsHovere ...

  9. Alpha阶段事后诸葛亮分析

    事后诸葛亮分析 一.设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 我们的软件可供各类人群闲暇时间消遣娱乐,锻炼脑力. 定义的很清楚,就是一个定位 ...

  10. 设计模式--Restful笔记(一)

    一.REST基础概念 首先REST是 Representational State Transfer 的缩写,如果一个架构符合REST原则,它就是RESTful架构. 在REST中的一切都被认为是一种 ...