HDU 2582 规律 素因子
定义$Gcd(n)=gcd(\binom{n}{1},\binom{n}{2}...\binom{n}{n-1})$,$f(n)=\sum_{i=3}^{n}{Gcd(i)}$,其中$(3<=n<=1000000)$。
由于组合数是二项式,Gcd()则是把首位两项去掉后所有项间进行gcd,那么我们可知当n为素数时,根据组合数公式,该素数不可能被其分母阶乘中的某个数除掉,那么每项都有该素数留下来,所以$Gcd(p) = p$,再推广,如果该数是某单个素数的幂指倍,那么同理仍然会有素数留下来所以$Gcd(p^x)=p$,而剩下的其余数,由于分母是阶乘,小于分子n的数都有可能出现,其中包括了n的因子,那么肯定会使gcd=1。手推一下就知道了。
然后就是筛。
/** @Date : 2017-09-20 20:19:04
* @FileName: HDU 2582 规律 素因子 phi-mu.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e6+20;
const double eps = 1e-8; LL pri[N];
LL ans[N];
int c = 0;
void prime()
{
MMF(ans);
for(int i = 2; i <= 1000000; i++)
{
if(!ans[i])
{
//pri[c++] = i;
for(LL j = i + i; j <= 1000000; j+=i)
if(!ans[i]) ans[j] = 1;
for(LL j = i; j <= 1000000; j*=i)
ans[j] = i;
}
}
for(int i = 4; i <= 1000000; i++)
ans[i] += ans[i - 1];
} int main()
{
int n;
prime();
while(cin >> n) printf("%lld\n", ans[n]);
return 0;
}
HDU 2582 规律 素因子的更多相关文章
- 数学--数论--HDU 2582 F(N) 暴力打表找规律
This time I need you to calculate the f(n) . (3<=n<=1000000) f(n)= Gcd(3)+Gcd(4)+-+Gcd(i)+-+Gc ...
- f(n) hdu 2582
calculate the f(n) . (3<=n<=1000000)f(n)= Gcd(3)+Gcd(4)+-+Gcd(i)+-+Gcd(n).Gcd(n)=gcd(C[n][1],C ...
- hdu 5351 规律+大数
题目大意:定义了一种fib字符串,问第n个fib串的前m个字母前后相等串的最大长度,大约就是这样的 其实主要读完题意的时候并没有思路,但是列几个fib字符串就会发现,除了fib1以外,所有串的前面都是 ...
- hdu 2582 f(n) 数学
打表找规律: 当n为质数是,GCD(n)=n; 当n为质数k的q次方时,GCD(n)=k; 其他情况,GCD(n)=1. 代码如下: #include<iostream> #include ...
- hdu 2582(数论相关定理+素数筛选+整数分解)
f(n) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- hdu 5587 规律
题意:开始序列{1}; 一次变换{1,1,2}: 两次变换{1,1,2,1,2,2,3} ... 求s[n];题解:打表 S1,S2,S4,S8,S16,S32......公式 S[n]=S[最近的比 ...
- HDU 5308 规律+模拟
给出N个数字N,要把全部数字用完.使用+-*/最后变为24.中间运算能够有有浮点数 对于1-14直接打表 15以上的能够通过13个同样数字得到24.然后使后面的数所有运算为0相加就可以 贴一发官方题解 ...
- HDU 5976 Detachment 打表找规律
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5976 Detachment Time Limit: 4000/2000 MS (Java/Other ...
- hdu 3032 Nim or not Nim? (SG函数博弈+打表找规律)
Nim or not Nim? Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Sub ...
随机推荐
- Python学习之路6 - 装饰器
装饰器 定义:本质是函数,(装饰其他函数)就是为其他函数添加附加功能.原则:1.不能修改被装饰的函数的源代码 2.不能修改被装饰的函数的调用方式 实现装饰器的知识储备: 1.函数即“变量” 2.高阶函 ...
- Fiveplus--王者光耀1
**光耀101** 汇总博客: 关文涛: 博客地址:随笔1 随笔2 杨蓝婷: 博客地址:随笔1 随笔2 蔡雅菁: 博客地址:随笔1 随笔2 黄森敏: 博客地址:随笔1 随笔2 林兴源: 博客地址:随笔 ...
- VS2013安装及单元测试
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAZ0AAAIlCAIAAACBzLJwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAE ...
- 01_Java基础_第1天(Java概述、环境变量、注释、关键字、标识符、常量)_讲义
今日内容介绍 1.Java开发环境搭建 2.HelloWorld案例 3.注释.关键字.标识符 4.数据(数据类型.常量) 01java语言概述 * A: java语言概述 * a: Java是sun ...
- MySQL 基于xtrabackup备份—热备工具
xtrabackup(仅对InnoDB存储引擎支持热备) percona公司开发 改进的MySQL分支:percona-server 存储引擎改进:InnoDB —> XtraDB 使用本地的R ...
- Java包名命名规则(转载)
转载自:http://lilinhai548.blog.163.com/blog/static/5847332920155132151359/ 鸣谢原作者 学习Java的童鞋们都知道,Java的包. ...
- yum 安装php环境
centos下安装php环境 | 浏览:3831 | 更新:2014-11-04 17:01 1 2 3 分步阅读 在网上看了很多,很多都不能用,所以就把能用的实践下,过程记录下,方便自己和网友以后查 ...
- PHP内置标准类
PHP内置标准类 php语言内部,有“很多现成的类”,其中有一个,被称为“内置标准类”. 这个类“内部”可以认为什么都没有,类似这样: class stdclass{ } 其作用,可以用于存储一些临 ...
- mysql项目路径URL编码
jdbc_url=jdbc:mysql://127.0.0.1:3306/test?serverTimezone=UTC&useUnicode=true&characterEncodi ...
- 第119天:移动端:CSS像素、屏幕像素和视口的关系
移动前端中常说的 viewport (视口)就是浏览器显示页面内容的屏幕区域.其中涉及几个重要概念是 dip ( device-independent pixel 设备逻辑像素 )和 CSS 像素之间 ...