# Back-Propagation Neural Networks
#
# Written in Python.  See http://www.python.org/
# Placed in the public domain.
# Neil Schemenauer <nas@arctrix.com>

import math
import random
import string

random.seed(0)

# calculate a random number where:  a <= rand < b
def rand(a, b):
    return (b-a)*random.random() + a

# Make a matrix (we could use NumPy to speed this up)
def makeMatrix(I, J, fill=0.0):
    m = []
    for i in range(I):
        m.append([fill]*J)
    return m

# our sigmoid function, tanh is a little nicer than the standard 1/(1+e^-x)
def sigmoid(x):
    return math.tanh(x)

# derivative of our sigmoid function, in terms of the output (i.e. y)
def dsigmoid(y):
    return 1.0 - y**2

class NN:
    def __init__(self, ni, nh, no):
        # number of input, hidden, and output nodes
        self.ni = ni + 1 # +1 for bias node
        self.nh = nh
        self.no = no

# activations for nodes
        self.ai = [1.0]*self.ni
        self.ah = [1.0]*self.nh
        self.ao = [1.0]*self.no
        
        # create weights
        self.wi = makeMatrix(self.ni, self.nh)
        self.wo = makeMatrix(self.nh, self.no)
        # set them to random vaules
        for i in range(self.ni):
            for j in range(self.nh):
                self.wi[i][j] = rand(-0.2, 0.2)
        for j in range(self.nh):
            for k in range(self.no):
                self.wo[j][k] = rand(-2.0, 2.0)

# last change in weights for momentum   
        self.ci = makeMatrix(self.ni, self.nh)
        self.co = makeMatrix(self.nh, self.no)

def update(self, inputs):
        if len(inputs) != self.ni-1:
            raise ValueError('wrong number of inputs')

# input activations
        for i in range(self.ni-1):
            #self.ai[i] = sigmoid(inputs[i])
            self.ai[i] = inputs[i]

# hidden activations
        for j in range(self.nh):
            sum = 0.0
            for i in range(self.ni):
                sum = sum + self.ai[i] * self.wi[i][j]
            self.ah[j] = sigmoid(sum)

# output activations
        for k in range(self.no):
            sum = 0.0
            for j in range(self.nh):
                sum = sum + self.ah[j] * self.wo[j][k]
            self.ao[k] = sigmoid(sum)

return self.ao[:]

def backPropagate(self, targets, N, M):
        if len(targets) != self.no:
            raise ValueError('wrong number of target values')

# calculate error terms for output
        output_deltas = [0.0] * self.no
        for k in range(self.no):
            error = targets[k]-self.ao[k]
            output_deltas[k] = dsigmoid(self.ao[k]) * error

# calculate error terms for hidden
        hidden_deltas = [0.0] * self.nh
        for j in range(self.nh):
            error = 0.0
            for k in range(self.no):
                error = error + output_deltas[k]*self.wo[j][k]
            hidden_deltas[j] = dsigmoid(self.ah[j]) * error

# update output weights
        for j in range(self.nh):
            for k in range(self.no):
                change = output_deltas[k]*self.ah[j]
                self.wo[j][k] = self.wo[j][k] + N*change + M*self.co[j][k]
                self.co[j][k] = change
                #print N*change, M*self.co[j][k]

# update input weights
        for i in range(self.ni):
            for j in range(self.nh):
                change = hidden_deltas[j]*self.ai[i]
                self.wi[i][j] = self.wi[i][j] + N*change + M*self.ci[i][j]
                self.ci[i][j] = change

# calculate error
        error = 0.0
        for k in range(len(targets)):
            error = error + 0.5*(targets[k]-self.ao[k])**2
        return error

def test(self, patterns):
        for p in patterns:
            print(p[0], '->', self.update(p[0]))

def weights(self):
        print('Input weights:')
        for i in range(self.ni):
            print(self.wi[i])
        print()
        print('Output weights:')
        for j in range(self.nh):
            print(self.wo[j])

def train(self, patterns, iterations=1000, N=0.5, M=0.1):
        # N: learning rate
        # M: momentum factor
        for i in range(iterations):
            error = 0.0
            for p in patterns:
                inputs = p[0]
                targets = p[1]
                self.update(inputs)
                error = error + self.backPropagate(targets, N, M)
            if i % 100 == 0:
                print('error %-.5f' % error)

def demo():
    # Teach network XOR function
    pat = [
        [[0,0], [0]],
        [[0,1], [1]],
        [[1,0], [1]],
        [[1,1], [0]]
    ]

# create a network with two input, two hidden, and one output nodes
    n = NN(2, 2, 1)
    # train it with some patterns
    n.train(pat)
    # test it
    n.test(pat)

if __name__ == '__main__':
    demo()

关于神经网络算法的 Python例程的更多相关文章

  1. day-11 python自带库实现2层简单神经网络算法

    深度神经网络算法,是基于神经网络算法的一种拓展,其层数更深,达到多层,本文以简单神经网络为例,利用梯度下降算法进行反向更新来训练神经网络权重和偏向参数,文章最后,基于Python 库实现了一个简单神经 ...

  2. Python实现神经网络算法识别手写数字集

    最近忙里偷闲学习了一点机器学习的知识,看到神经网络算法时我和阿Kun便想到要将它用Python代码实现.我们用了两种不同的方法来编写它.这里只放出我的代码. MNIST数据集基于美国国家标准与技术研究 ...

  3. 使用Python scikit-learn 库实现神经网络算法

    1:神经网络算法简介 2:Backpropagation算法详细介绍 3:非线性转化方程举例 4:自己实现神经网络算法NeuralNetwork 5:基于NeuralNetwork的XOR实例 6:基 ...

  4. 吴裕雄 python 人工智能——基于神经网络算法在智能医疗诊断中的应用探索代码简要展示

    #K-NN分类 import os import sys import time import operator import cx_Oracle import numpy as np import ...

  5. 如何用70行Java代码实现深度神经网络算法(转)

    对于现在流行的深度学习,保持学习精神是必要的——程序员尤其是架构师永远都要对核心技术和关键算法保持关注和敏感,必要时要动手写一写掌握下来,先不用关心什么时候用到——用不用是政治问题,会不会写是技术问题 ...

  6. 机器学习算法与Python实践之(二)支持向量机(SVM)初级

    机器学习算法与Python实践之(二)支持向量机(SVM)初级 机器学习算法与Python实践之(二)支持向量机(SVM)初级 zouxy09@qq.com http://blog.csdn.net/ ...

  7. 如何用70行Java代码实现深度神经网络算法

    http://www.tuicool.com/articles/MfYjQfV 如何用70行Java代码实现深度神经网络算法 时间 2016-02-18 10:46:17  ITeye 原文  htt ...

  8. 【Python Deap库】遗传算法/遗传编程 进化算法基于python DEAP库深度解析讲解

    目录 前言 概述 启发式的理解(重点) 优化问题的定义 个体编码 初始族群的创建 评价 配种选择 锦标赛 轮盘赌选择 随机普遍抽样选择 变异 单点交叉 两点交叉 均匀交叉 部分匹配交叉 突变 高斯突变 ...

  9. 《BI那点儿事》Microsoft 神经网络算法

    Microsoft神经网络是迄今为止最强大.最复杂的算法.要想知道它有多复杂,请看SQL Server联机丛书对该算法的说明:“这个算法通过建立多层感知神经元网络,建立分类和回归挖掘模型.与Micro ...

随机推荐

  1. Java常用类:StringBuilder

    一.介绍 2 3 4 5 //同样,StringBuilder也是final修饰的不可变,相比String来说,继承了AbstractStringBuilder,StringBuffer也是同样继承了 ...

  2. 2018.11.12 RF debug

    1 SG setting 2 Date 3  0-1 4 ASK 5 Power supply 6  SG - filter 7 NRF905-  demodulation 8  RX test 9 ...

  3. Eclipse下配置Maven

    1.修改maven根目录下的conf/setting.xml文件,主要修改localRepository属性,用于管理maven下载的jar文件存放的位置. 2.修改eclipse的maven配置,w ...

  4. 如何修改MyEclipse的默认编码方式

    在创建jsp页面时,默认首行出现“<%@ page language="java" import="java.util.*" pageEncoding=& ...

  5. ZK单机最简配置

    修改zk home/conf下的zoo_sample.cfg,重新命名为zoo.cfg. 修改配置为: dataDir=/root/data/zookeeper-data clientPort=218 ...

  6. [Linux] Boot分区满了的处理方法 The volume "boot" has only 0 bytes disk space remaining

    1.查看系统目前正在用的内核 abby@abby:~$ uname -r ..--generic 2.查看/boot保存的所有内核 abby@abby:~$ ls -lah /boot total 3 ...

  7. linux centos 安装opencv

    系统:Centos 6.5 最后版本 OpenCV: 2.4.9 1.安装依赖包(很重要) yum install cmake gcc gcc-c++ gtk+-devel gimp-devel gi ...

  8. linux下端口被占用

    1.查看端口 netstat -ano 参数含义: -a, --all  显示监听或非监听状态的接口 Show  both listening and non-listening (for TCP t ...

  9. 【剑指offer】10矩阵覆盖

    原创博文,转载请注明出处! 0.简介 # 本文是牛客网<剑指offer>刷题笔记,笔记索引链接 1.题目 # 用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地 ...

  10. MySQL的一些常用sql函数(持续更新。。)

    1. 字符串拼接函数 :CONCAT(str1,str2,...) SELECT CONCAT('AAA','BBB') STR; //AAABBB 2. 判断是否为null,为null就指定另外一个 ...