# Back-Propagation Neural Networks
#
# Written in Python.  See http://www.python.org/
# Placed in the public domain.
# Neil Schemenauer <nas@arctrix.com>

import math
import random
import string

random.seed(0)

# calculate a random number where:  a <= rand < b
def rand(a, b):
    return (b-a)*random.random() + a

# Make a matrix (we could use NumPy to speed this up)
def makeMatrix(I, J, fill=0.0):
    m = []
    for i in range(I):
        m.append([fill]*J)
    return m

# our sigmoid function, tanh is a little nicer than the standard 1/(1+e^-x)
def sigmoid(x):
    return math.tanh(x)

# derivative of our sigmoid function, in terms of the output (i.e. y)
def dsigmoid(y):
    return 1.0 - y**2

class NN:
    def __init__(self, ni, nh, no):
        # number of input, hidden, and output nodes
        self.ni = ni + 1 # +1 for bias node
        self.nh = nh
        self.no = no

# activations for nodes
        self.ai = [1.0]*self.ni
        self.ah = [1.0]*self.nh
        self.ao = [1.0]*self.no
        
        # create weights
        self.wi = makeMatrix(self.ni, self.nh)
        self.wo = makeMatrix(self.nh, self.no)
        # set them to random vaules
        for i in range(self.ni):
            for j in range(self.nh):
                self.wi[i][j] = rand(-0.2, 0.2)
        for j in range(self.nh):
            for k in range(self.no):
                self.wo[j][k] = rand(-2.0, 2.0)

# last change in weights for momentum   
        self.ci = makeMatrix(self.ni, self.nh)
        self.co = makeMatrix(self.nh, self.no)

def update(self, inputs):
        if len(inputs) != self.ni-1:
            raise ValueError('wrong number of inputs')

# input activations
        for i in range(self.ni-1):
            #self.ai[i] = sigmoid(inputs[i])
            self.ai[i] = inputs[i]

# hidden activations
        for j in range(self.nh):
            sum = 0.0
            for i in range(self.ni):
                sum = sum + self.ai[i] * self.wi[i][j]
            self.ah[j] = sigmoid(sum)

# output activations
        for k in range(self.no):
            sum = 0.0
            for j in range(self.nh):
                sum = sum + self.ah[j] * self.wo[j][k]
            self.ao[k] = sigmoid(sum)

return self.ao[:]

def backPropagate(self, targets, N, M):
        if len(targets) != self.no:
            raise ValueError('wrong number of target values')

# calculate error terms for output
        output_deltas = [0.0] * self.no
        for k in range(self.no):
            error = targets[k]-self.ao[k]
            output_deltas[k] = dsigmoid(self.ao[k]) * error

# calculate error terms for hidden
        hidden_deltas = [0.0] * self.nh
        for j in range(self.nh):
            error = 0.0
            for k in range(self.no):
                error = error + output_deltas[k]*self.wo[j][k]
            hidden_deltas[j] = dsigmoid(self.ah[j]) * error

# update output weights
        for j in range(self.nh):
            for k in range(self.no):
                change = output_deltas[k]*self.ah[j]
                self.wo[j][k] = self.wo[j][k] + N*change + M*self.co[j][k]
                self.co[j][k] = change
                #print N*change, M*self.co[j][k]

# update input weights
        for i in range(self.ni):
            for j in range(self.nh):
                change = hidden_deltas[j]*self.ai[i]
                self.wi[i][j] = self.wi[i][j] + N*change + M*self.ci[i][j]
                self.ci[i][j] = change

# calculate error
        error = 0.0
        for k in range(len(targets)):
            error = error + 0.5*(targets[k]-self.ao[k])**2
        return error

def test(self, patterns):
        for p in patterns:
            print(p[0], '->', self.update(p[0]))

def weights(self):
        print('Input weights:')
        for i in range(self.ni):
            print(self.wi[i])
        print()
        print('Output weights:')
        for j in range(self.nh):
            print(self.wo[j])

def train(self, patterns, iterations=1000, N=0.5, M=0.1):
        # N: learning rate
        # M: momentum factor
        for i in range(iterations):
            error = 0.0
            for p in patterns:
                inputs = p[0]
                targets = p[1]
                self.update(inputs)
                error = error + self.backPropagate(targets, N, M)
            if i % 100 == 0:
                print('error %-.5f' % error)

def demo():
    # Teach network XOR function
    pat = [
        [[0,0], [0]],
        [[0,1], [1]],
        [[1,0], [1]],
        [[1,1], [0]]
    ]

# create a network with two input, two hidden, and one output nodes
    n = NN(2, 2, 1)
    # train it with some patterns
    n.train(pat)
    # test it
    n.test(pat)

if __name__ == '__main__':
    demo()

关于神经网络算法的 Python例程的更多相关文章

  1. day-11 python自带库实现2层简单神经网络算法

    深度神经网络算法,是基于神经网络算法的一种拓展,其层数更深,达到多层,本文以简单神经网络为例,利用梯度下降算法进行反向更新来训练神经网络权重和偏向参数,文章最后,基于Python 库实现了一个简单神经 ...

  2. Python实现神经网络算法识别手写数字集

    最近忙里偷闲学习了一点机器学习的知识,看到神经网络算法时我和阿Kun便想到要将它用Python代码实现.我们用了两种不同的方法来编写它.这里只放出我的代码. MNIST数据集基于美国国家标准与技术研究 ...

  3. 使用Python scikit-learn 库实现神经网络算法

    1:神经网络算法简介 2:Backpropagation算法详细介绍 3:非线性转化方程举例 4:自己实现神经网络算法NeuralNetwork 5:基于NeuralNetwork的XOR实例 6:基 ...

  4. 吴裕雄 python 人工智能——基于神经网络算法在智能医疗诊断中的应用探索代码简要展示

    #K-NN分类 import os import sys import time import operator import cx_Oracle import numpy as np import ...

  5. 如何用70行Java代码实现深度神经网络算法(转)

    对于现在流行的深度学习,保持学习精神是必要的——程序员尤其是架构师永远都要对核心技术和关键算法保持关注和敏感,必要时要动手写一写掌握下来,先不用关心什么时候用到——用不用是政治问题,会不会写是技术问题 ...

  6. 机器学习算法与Python实践之(二)支持向量机(SVM)初级

    机器学习算法与Python实践之(二)支持向量机(SVM)初级 机器学习算法与Python实践之(二)支持向量机(SVM)初级 zouxy09@qq.com http://blog.csdn.net/ ...

  7. 如何用70行Java代码实现深度神经网络算法

    http://www.tuicool.com/articles/MfYjQfV 如何用70行Java代码实现深度神经网络算法 时间 2016-02-18 10:46:17  ITeye 原文  htt ...

  8. 【Python Deap库】遗传算法/遗传编程 进化算法基于python DEAP库深度解析讲解

    目录 前言 概述 启发式的理解(重点) 优化问题的定义 个体编码 初始族群的创建 评价 配种选择 锦标赛 轮盘赌选择 随机普遍抽样选择 变异 单点交叉 两点交叉 均匀交叉 部分匹配交叉 突变 高斯突变 ...

  9. 《BI那点儿事》Microsoft 神经网络算法

    Microsoft神经网络是迄今为止最强大.最复杂的算法.要想知道它有多复杂,请看SQL Server联机丛书对该算法的说明:“这个算法通过建立多层感知神经元网络,建立分类和回归挖掘模型.与Micro ...

随机推荐

  1. py2exe生成.exe(python3.4 尝试)

    第一次成功将python3.4脚本生成 exe文件. 测试环境:win8.1 32位,python3.4,pyside py打包成exe的工具我所知道的有三种 cx-freeze , py2exe , ...

  2. 2018.11.12 RF debug

    1 SG setting 2 Date 3  0-1 4 ASK 5 Power supply 6  SG - filter 7 NRF905-  demodulation 8  RX test 9 ...

  3. L155

    Wireless Festival has been given permission to remain in London's Finsbury Park, provided performers ...

  4. Linux系统在启动过程中grub引导文件丢失的解决方法

    在/boot/grub2目录下有一个grub.cfg文件:该文件主要是用来自动地引导系统启动内核程序和系统的初始化程序. 问题一:当系统在启动的情况下,我们不小心删除/boot/grub2/grub. ...

  5. Linux输入输出管理

      一.系统输入输出的理解 运行一个程序时,需要从某个位置读取输入信息,然后CPU处理,最后将输出 显示在屏幕或文件中:其中,某个位置相当于输入设备,屏幕或文件为输出设备. 标准输入:stdin,默认 ...

  6. vue.js 源代码学习笔记 ----- 工具方法 props

    /* @flow */ import { hasOwn, isObject, isPlainObject, capitalize, hyphenate } from 'shared/util' imp ...

  7. Jenkins构建持续集成

    Jenkins 是一个开源软件项目,旨在提供一个开放易用的软件平台,使软件的持续集成变得可能.现在软件开发追求的是效率以及质量,Jenkins使得自动化成为可能! 亮点 采用shell自定义脚本,控制 ...

  8. 多态 Java 2015/9/16

    多态:http://www.cnblogs.com/chenssy/p/3372798.html     多态就是指程序中定义的引用变量所指向的具体类型和通过该引用变量发出的方法调用在编程时并不确定, ...

  9. Java IO,io,文件操作,删除文件,删除文件夹,获取文件父级目录

    Java IO,io,文件操作,删除文件,删除文件夹,获取文件父级目录 这里先简单的贴下常用的方法: File.separator //当前系统文件分隔符 File.pathSeparator // ...

  10. erl_0014 《硝烟中的erlang》 读书笔记001 “绪论”

    1.大家听说Erlang,往往是因为其对高并发的良好支持.其实,Erlang的核心特征是容错,从某种程度上讲,并发只是容错这个约束下的一个副产品.容错是Erlang语言的DNA,也是和其他所有编程语言 ...