3747: [POI2015]Kinoman

Time Limit: 60 Sec  Memory Limit: 128 MB
Submit: 830  Solved: 338

Description

共有m部电影,编号为1~m,第i部电影的好看值为w[i]。
在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部。
你可以选择l,r(1<=l<=r<=n),并观看第l,l+1,…,r天内所有的电影。如果同一部电影你观看多于一次,你会感到无聊,于是无法获得这部电影的好看值。所以你希望最大化观看且仅观看过一次的电影的好看值的总和。

Input

第一行两个整数n,m(1<=m<=n<=1000000)。
第二行包含n个整数f[1],f[2],…,f[n](1<=f[i]<=m)。
第三行包含m个整数w[1],w[2],…,w[m](1<=w[j]<=1000000)。

Output

输出观看且仅观看过一次的电影的好看值的总和的最大值。

Sample Input

9 4
2 3 1 1 4 1 2 4 1
5 3 6 6

Sample Output

15
样例解释:
观看第2,3,4,5,6,7天内放映的电影,其中看且仅看过一次的电影的编号为2,3,4。

HINT

Source

【分析】

  这题应该挺经典。?

  就是先弄一个next,然后每次求以i结尾的最大值。

  i的值为w,next[i]的值为-w,更前面的next的值为0,线段树维护这个,(好像树状数组也是可以的),然后就好了。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 1000010
#define LL long long // int mymax(int x,int y) {return x>y?x:y;}
LL mymax(LL x,LL y) {return x>y?x:y;} int a[Maxn],w[Maxn],f[Maxn],ft[Maxn],nt[Maxn]; struct node
{
int l,r,lc,rc;
LL mx,lazy;
}tr[Maxn*]; int tot=;
int build(int l,int r)
{
int x=++tot;
tr[x].l=l;tr[x].r=r;
tr[x].lazy=tr[x].mx=;
if(l<r)
{
int mid=(l+r)>>;
tr[x].lc=build(l,mid);
tr[x].rc=build(mid+,r);
}
else tr[x].lc=tr[x].rc=;
return x;
} void upd(int x)
{
tr[x].mx+=tr[x].lazy;
if(tr[x].lazy==||tr[x].l==tr[x].r) {tr[x].lazy=;return;}
int lc=tr[x].lc,rc=tr[x].rc;
tr[lc].lazy+=tr[x].lazy;
tr[rc].lazy+=tr[x].lazy;
tr[x].lazy=;
} void change(int x,int l,int r,int y)
{
if(tr[x].l==l&&tr[x].r==r)
{
tr[x].lazy+=y;
upd(x);
return;
}
upd(x);
int mid=(tr[x].l+tr[x].r)>>;
if(r<=mid) change(tr[x].lc,l,r,y);
else if(l>mid) change(tr[x].rc,l,r,y);
else
{
change(tr[x].lc,l,mid,y);
change(tr[x].rc,mid+,r,y);
}
upd(tr[x].lc);upd(tr[x].rc);
tr[x].mx=mymax(tr[tr[x].lc].mx,tr[tr[x].rc].mx);
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
for(int i=;i<=m;i++) scanf("%d",&w[i]);
memset(ft,,sizeof(ft));
for(int i=;i<=n;i++)
{
nt[i]=ft[a[i]];
ft[a[i]]=i;
}
build(,n);
LL maxx=;
for(int i=;i<=n;i++)
{
change(,,i,w[a[i]]);
if(nt[i]) change(,,nt[i],-*w[a[i]]);
if(nt[nt[i]]) change(,,nt[nt[i]],w[a[i]]);
maxx=mymax(maxx,tr[].mx);
}
printf("%lld\n",maxx);
return ;
}

2017-04-08 10:54:12

【BZOJ 3747】 3747: [POI2015]Kinoman (线段树)的更多相关文章

  1. Bzoj 3747: [POI2015]Kinoman 线段树

    3747: [POI2015]Kinoman Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 553  Solved: 222[Submit][Stat ...

  2. 3747: [POI2015]Kinoman|线段树

    枚举左区间线段树维护最大值 #include<algorithm> #include<iostream> #include<cstdlib> #include< ...

  3. 【BZOJ3747】[POI2015]Kinoman 线段树

    [BZOJ3747][POI2015]Kinoman Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第 ...

  4. 【bzoj3747】[POI2015]Kinoman 线段树区间合并

    题目描述 一个长度为n的序列,每个数为1~m之一.求一段连续子序列,使得其中之出现过一次的数对应的价值之和最大. 输入 第一行两个整数n,m(1<=m<=n<=1000000). 第 ...

  5. 【bzoj3747】[POI2015]Kinoman - 线段树(经典)

    Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部. 你可以选择l,r(1<=l< ...

  6. BZOJ3747:[POI2015]Kinoman(线段树)

    Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部. 你可以选择l,r(1<=l< ...

  7. BZOJ_3747_[POI2015]Kinoman_线段树

    BZOJ_3747_[POI2015]Kinoman_线段树 Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放 ...

  8. BZOJ_4383_[POI2015]Pustynia_线段树优化建图+拓扑排序

    BZOJ_4383_[POI2015]Pustynia_线段树优化建图+拓扑排序 Description 给定一个长度为n的正整数序列a,每个数都在1到10^9范围内,告诉你其中s个数,并给出m条信息 ...

  9. [BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并)

    [BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并) 题面 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1 ...

  10. [BZOJ 2653] middle(可持久化线段树+二分答案)

    [BZOJ 2653] middle(可持久化线段树+二分答案) 题面 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序 ...

随机推荐

  1. DevExpress使用教程:GridView经验小结(官方中文文献经典资料技巧)

    下面是笔者自己总结的使用 DevExpress Gridview 的一些经验小结,分享给大家: 1.去除 GridView 头上的 "Drag a column header here to ...

  2. 【洛谷 P2764】 最小路径覆盖问题(最大流)

    题目链接 首先有\(n\)条路径,每条路径就是一个点,然后尽量合并,答案就是点数-合并数. 套路拆点,源连入,出连汇,原有的边入出连. 最大流就是最大合并数,第一问解决. 然后怎么输出方案? 我是找到 ...

  3. 牛客网习题剑指offer之数值的整数次方

    分析: 要考虑到exponent为0和负数的情况. 如果base是0并且exponent是负数的时候呢?那就发生除0的情况了. AC代码: public class Solution { public ...

  4. nth-child,nth-last-child,only-child,nth-of-type,nth-last-of-type,only-of-type,first-of-type,last-of-type,first-child,last-child伪类区别和用法

    我将这坨伪类分成三组,第一组:nth-child,nth-last-child,only-child第二组:nth-of-type,nth-last-of-type,第三组:first-of-tpye ...

  5. long类型的数据转化为时间

    long time = 111111111111111111111:SimpleDateFormat sdf= new SimpleDateFormat("yyyy-MM-dd HH:mm: ...

  6. perf + 火焰图分析程序性能

    1.perf命令简要介绍 性能调优时,我们通常需要分析查找到程序百分比高的热点代码片段,这便需要使用 perf record 记录单个函数级别的统计信息,并使用 perf report 来显示统计结果 ...

  7. 离散化&&逆序数对

    题目:http://www.fjutacm.com/Problem.jsp?pid=3087 #include<stdio.h> #include<string.h> #inc ...

  8. AUC画图与计算

    利用sklearn画AUC曲线 from sklearn.metrics import roc_curve labels=[1,1,0,0,1] preds=[0.8,0.7,0.3,0.6,0.5] ...

  9. nginx配置不当导致的目录遍历下载漏洞-“百度杯”CTF比赛 2017 二月场

    题目:http://98fe42cede6c4f1c9ec3f55c0f542d06b680d580b5bf41d4.game.ichunqiu.com/login.php 题目内容: 网站要上线了, ...

  10. 28 - 生成器交互-__slots__-未实现异常

    目录 1 生成器交互 2 slots 3 未实现和未实现异常 4 Python的对象模型 1 生成器交互 生成器提供了一个send方法用于动态的和生成器对象进行交互.怎么理解的呢?看下面的例子: de ...