【BZOJ 3747】 3747: [POI2015]Kinoman (线段树)
3747: [POI2015]Kinoman
Time Limit: 60 Sec Memory Limit: 128 MB
Submit: 830 Solved: 338Description
共有m部电影,编号为1~m,第i部电影的好看值为w[i]。在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部。你可以选择l,r(1<=l<=r<=n),并观看第l,l+1,…,r天内所有的电影。如果同一部电影你观看多于一次,你会感到无聊,于是无法获得这部电影的好看值。所以你希望最大化观看且仅观看过一次的电影的好看值的总和。Input
第一行两个整数n,m(1<=m<=n<=1000000)。第二行包含n个整数f[1],f[2],…,f[n](1<=f[i]<=m)。第三行包含m个整数w[1],w[2],…,w[m](1<=w[j]<=1000000)。Output
输出观看且仅观看过一次的电影的好看值的总和的最大值。Sample Input
9 4
2 3 1 1 4 1 2 4 1
5 3 6 6Sample Output
15
样例解释:
观看第2,3,4,5,6,7天内放映的电影,其中看且仅看过一次的电影的编号为2,3,4。HINT
Source
【分析】
这题应该挺经典。?
就是先弄一个next,然后每次求以i结尾的最大值。
i的值为w,next[i]的值为-w,更前面的next的值为0,线段树维护这个,(好像树状数组也是可以的),然后就好了。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 1000010
#define LL long long // int mymax(int x,int y) {return x>y?x:y;}
LL mymax(LL x,LL y) {return x>y?x:y;} int a[Maxn],w[Maxn],f[Maxn],ft[Maxn],nt[Maxn]; struct node
{
int l,r,lc,rc;
LL mx,lazy;
}tr[Maxn*]; int tot=;
int build(int l,int r)
{
int x=++tot;
tr[x].l=l;tr[x].r=r;
tr[x].lazy=tr[x].mx=;
if(l<r)
{
int mid=(l+r)>>;
tr[x].lc=build(l,mid);
tr[x].rc=build(mid+,r);
}
else tr[x].lc=tr[x].rc=;
return x;
} void upd(int x)
{
tr[x].mx+=tr[x].lazy;
if(tr[x].lazy==||tr[x].l==tr[x].r) {tr[x].lazy=;return;}
int lc=tr[x].lc,rc=tr[x].rc;
tr[lc].lazy+=tr[x].lazy;
tr[rc].lazy+=tr[x].lazy;
tr[x].lazy=;
} void change(int x,int l,int r,int y)
{
if(tr[x].l==l&&tr[x].r==r)
{
tr[x].lazy+=y;
upd(x);
return;
}
upd(x);
int mid=(tr[x].l+tr[x].r)>>;
if(r<=mid) change(tr[x].lc,l,r,y);
else if(l>mid) change(tr[x].rc,l,r,y);
else
{
change(tr[x].lc,l,mid,y);
change(tr[x].rc,mid+,r,y);
}
upd(tr[x].lc);upd(tr[x].rc);
tr[x].mx=mymax(tr[tr[x].lc].mx,tr[tr[x].rc].mx);
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
for(int i=;i<=m;i++) scanf("%d",&w[i]);
memset(ft,,sizeof(ft));
for(int i=;i<=n;i++)
{
nt[i]=ft[a[i]];
ft[a[i]]=i;
}
build(,n);
LL maxx=;
for(int i=;i<=n;i++)
{
change(,,i,w[a[i]]);
if(nt[i]) change(,,nt[i],-*w[a[i]]);
if(nt[nt[i]]) change(,,nt[nt[i]],w[a[i]]);
maxx=mymax(maxx,tr[].mx);
}
printf("%lld\n",maxx);
return ;
}
2017-04-08 10:54:12
【BZOJ 3747】 3747: [POI2015]Kinoman (线段树)的更多相关文章
- Bzoj 3747: [POI2015]Kinoman 线段树
3747: [POI2015]Kinoman Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 553 Solved: 222[Submit][Stat ...
- 3747: [POI2015]Kinoman|线段树
枚举左区间线段树维护最大值 #include<algorithm> #include<iostream> #include<cstdlib> #include< ...
- 【BZOJ3747】[POI2015]Kinoman 线段树
[BZOJ3747][POI2015]Kinoman Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第 ...
- 【bzoj3747】[POI2015]Kinoman 线段树区间合并
题目描述 一个长度为n的序列,每个数为1~m之一.求一段连续子序列,使得其中之出现过一次的数对应的价值之和最大. 输入 第一行两个整数n,m(1<=m<=n<=1000000). 第 ...
- 【bzoj3747】[POI2015]Kinoman - 线段树(经典)
Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部. 你可以选择l,r(1<=l< ...
- BZOJ3747:[POI2015]Kinoman(线段树)
Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部. 你可以选择l,r(1<=l< ...
- BZOJ_3747_[POI2015]Kinoman_线段树
BZOJ_3747_[POI2015]Kinoman_线段树 Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放 ...
- BZOJ_4383_[POI2015]Pustynia_线段树优化建图+拓扑排序
BZOJ_4383_[POI2015]Pustynia_线段树优化建图+拓扑排序 Description 给定一个长度为n的正整数序列a,每个数都在1到10^9范围内,告诉你其中s个数,并给出m条信息 ...
- [BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并)
[BZOJ 1483] [HNOI2009] 梦幻布丁 (线段树合并) 题面 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1 ...
- [BZOJ 2653] middle(可持久化线段树+二分答案)
[BZOJ 2653] middle(可持久化线段树+二分答案) 题面 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序 ...
随机推荐
- 给你灵感!21个精美的 iOS APP 网站设计欣赏
iOS 吹起了轰轰烈烈的扁平化设计风格,而做为承载 App 宣传重任的网页,整体设计风格的变迁如何?是否也如iOS的设计风格改革一样彻底的翻转?还是如往常一直深耕成熟的设计风格? Spendee Fo ...
- [acmm week12]二分+dp+单调队列
1004 抄作业 Time Limit: 1sec Memory Limit:256MB Description Zfree虽然平时很爱学习,但是他迫于生活所迫(比如设计cpu实 ...
- 【leetcode 简单】第一题 两数之和
给定一个整数数组和一个目标值,找出数组中和为目标值的两个数. 你可以假设每个输入只对应一种答案,且同样的元素不能被重复利用. 示例: 给定 nums = [2, 7, 11, 15], target ...
- POJ 3233 Matrix Power Series (矩阵快速幂)
题目链接 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A^2 + A^3 + - ...
- Sublime之快捷键(二)
1. 在使用Sublime的时候,经常用到选中文件中相同的一些字段,那怎么办呢? 快捷键: ctrl + d 可以快速的选择,你所选中的文字,每次按下该快捷键,就会自动的寻找相同的字段: Alt + ...
- 搭建自己的PHP框架心得——转载
原文:http://www.cnblogs.com/zhenbianshu/p/5331165.html 前言 说到写PHP的MVC框架,大家想到的第一个词--“造轮子”,是的,一个还没有深厚功力的程 ...
- perl6 struct2-045 EXP
测试站点: http://www.yutian.com.cn/index.action http://www.hjxzyzz.com:8088/pfw/login.action 代码如下: use v ...
- xss自动化攻击
所需工具 [1.xssValidator] [2.phantomjs] [3.xss.js] /** * This is a basic phantomJS script that will be u ...
- React 16 源码瞎几把解读 【一】 从jsx到一个react 虚拟dom对象
一.jsx变createElement 每一个用jsx语法书写的react组件最后都会变成 react.createElement(...)这一坨东西, // 转变前 export default ( ...
- openjudge-NOI 2.6-1944 吃糖果
题目链接:http://noi.openjudge.cn/ch0206/1944/ 题解: 递推,题目中给出了很详细的过程,不讲解 #include<cstdio> int n; int ...