Loj 2028 随机序列
Loj 2028 随机序列
- 连续的乘号会将序列分成若干个块,块与块之间用加减号连接:
\]
- 除去所有都是乘号的一种,对于任意一个序列,总有与之对应唯一的另一个序列,它们所有的加减号都相反.
- 把这两个序列的和相加,就只剩下了 \(2*(a_1*a_2*...a_i)\),其中 \(i\) 为第一个加减号之前的位置.
- 那么平均下来,相当于每个序列的贡献为 \((a_1*a_2*...a_i)\).
- 考虑对每个 \(i\) ,前面填入了 \(i-1\) 个乘号,相邻的必须是加减号,后面 \(n-i-1\) 个符号随便填,共有 \(2*3^{n-i-1}\) 种.
- 那么用线段树对于 \([1,n-1]\) 维护 \(v_i=3^{n-i-1}*2*\prod_{j=1}^i a_i\) 的和,答案即为
\]
- 将位置 \(i\) 的数从 \(a\) 改为 \(b\) ,相当于对区间 \([i,n-1]\) 乘了 \(\frac b a\) .显然容易实现.
- 注意修改位置 \(n\) 上的数时不用区间修改.否则 \(L>R\) ,会炸.
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mp make_pair
#define pii pair<int,int>
inline int read()
{
int x=0;
bool pos=1;
char ch=getchar();
for(;!isdigit(ch);ch=getchar())
if(ch=='-')
pos=0;
for(;isdigit(ch);ch=getchar())
x=x*10+ch-'0';
return pos?x:-x;
}
const int P=1e9+7;
const int MAXN=1e5+10;
const int MAXV=1e4;
int n,m;
inline int add(int a,int b)
{
return (a + b) % P;
}
inline int mul(int a,int b)
{
return 1LL * a * b % P;
}
int fpow(int a,int b)
{
int res=1;
while(b)
{
if(b&1)
res=mul(res,a);
a=mul(a,a);
b>>=1;
}
return res;
}
int inv[MAXV+10],Pow[MAXN];
int a[MAXN],prod[MAXN];
struct node{
int l,r;
int sum,tag;
node()
{
tag=1;
}
}Tree[MAXN<<2];
#define root Tree[o]
#define lson Tree[o<<1]
#define rson Tree[o<<1|1]
void pushup(int o)
{
root.sum=add(lson.sum,rson.sum);
}
void BuildTree(int o,int l,int r)
{
root.l=l,root.r=r;
if(l==r)
{
//fpow(3,n-l-1) Pow[n-l-1]
int tmp=mul(Pow[n-l-1],2);
tmp=mul(tmp,prod[l]);
root.sum=tmp;
return;
}
int mid=(l+r)>>1;
BuildTree(o<<1,l,mid);
BuildTree(o<<1|1,mid+1,r);
pushup(o);
}
void Modifiy(int o,int c)
{
root.sum=mul(root.sum,c);
root.tag=mul(root.tag,c);
}
void pushdown(int o)
{
if(root.tag!=1)
{
Modifiy(o<<1,root.tag);
Modifiy(o<<1|1,root.tag);
root.tag=1;
}
}
void update(int o,int L,int R,int c)
{
int l=root.l,r=root.r;
if(l>R || r<l)
return;
if(L<=l && r<=R)
{
Modifiy(o,c);
return;
}
pushdown(o);
int mid=(l+r)>>1;
if(L<=mid)
update(o<<1,L,R,c);
if(R>mid)
update(o<<1|1,L,R,c);
pushup(o);
}
void init()
{
inv[1]=1;
for(int i=2;i<=MAXV;++i)
inv[i]=mul(P-P/i,inv[P%i]);
Pow[0]=1;
for(int i=1;i<=n;++i)
Pow[i]=mul(Pow[i-1],3);
}
int main()
{
n=read(),m=read();
init();
prod[0]=1;
for(int i=1;i<=n;++i)
prod[i]=mul(prod[i-1],a[i]=read());
BuildTree(1,1,n-1);
while(m--)
{
int i=read(),v=read();
int c=mul(v,inv[a[i]]);
a[i]=v;
prod[n]=mul(prod[n],c);
if(i<=n-1)
update(1,i,n-1,c);
int ans=add(Tree[1].sum,prod[n]);
printf("%d\n",ans);
}
return 0;
}
Loj 2028 随机序列的更多相关文章
- SHOI做题记录
LOJ #2027. 「SHOI2016」黑暗前的幻想乡 考虑到每个公司一条边,那就等价于没有任何一家公司没有边. 然后就可以容斥+矩阵树定理,没了. LOJ #2028. 「SHOI2016」随机序 ...
- 【LOJ】#2028. 「SHOI2016」随机序列
题解 我们发现只有从第一个往后数,用乘号联通的块是有贡献的 为什么,因为后面所有表达式 肯定会有 + ,还会有个-,贡献全都被抵消了 所以我们处理出前缀乘积,然后乘上表达式的方案数 答案就是\(\su ...
- 随机序列生成算法---生成前N个整数的一组随机序列
问题描述: 给定输入N,生成从1开始的:1,2,3,4,......N 一组随机序列,序列中的数不能重复出现. 比如:N=5,合法的随机序列为{4,3,1,5,2} .{3,1,4,2,5}……非法的 ...
- [OpenJudge 3066]随机序列
[OpenJudge 3066]随机序列 试题描述 Bob喜欢按照如下规则生成随机数: 第一步:令a[0] = S, 当n = 0: 第二步:a[n+1] = (a[n]*A+B)%P: 第三步:如果 ...
- hrbust oj 1526+2028 树状数组
冒泡排序中 如果一个数的后面的某个数和这个数不符合排序规则 那么这个数就会在未来的某次冒泡中与那个数进行交换 这里用到了 树状数组求逆序数的办法来做 需要注意的是2028并不可以改完数组大小后直接套1 ...
- [Noi2016]区间 BZOJ4653 洛谷P1712 Loj#2086
额... 首先,看到这道题,第一想法就是二分答案+线段树... 兴高采烈的认为我一定能AC,之后发现n是500000... nlog^2=80%,亲测可过... 由于答案是求满足题意的最大长度-最小长 ...
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
- Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...
随机推荐
- 关于Visual Studio 2010自动添加头部注释信息
作为一个万年潜水党,不关这一篇文章技术含量如何,也算是一个好的开始吧. 在日常的开发中我们经常需要为类库添加注释和版权等信息,这样我们就需要每次去拷贝粘贴同样的文字,为了减少这种重复性的工作,我们 ...
- android ui界面设计参数讲解
百度文库: http://wenku.baidu.com/link?url=s66Hw6byBEzmjL77doYL1YQN4Y_39F7MovaHKs5mVGrzTDOQCAmiM-1N_6Cdm- ...
- tp5---auth权限搭建2
1.auth权限 composer auth库 下载完成之后 根据auth.php中所提及怎样创建表,就怎样建表 2.安利一个简单的建表操作 根据composer下载里的文件注释的代码,将其直接放到s ...
- docker教程目录
为什么要用 Docker 什么是 Docker Docker 镜像 Docker容器的运用 Docker仓库 Docker如何获取镜像 CentOS 安装Docker Docker 列出镜像 Dock ...
- 常见ADB命令
常见ADB命令 比如说知道了push和pull操作,就可以实现一个简单的手机助手. 如果有多台设备,操作的时候要指定设备. -s加设备名称
- mysql外键理解
一个班级的学生个人信息表: 什么是外键 在设计的时候,就给表1加入一个外键,这个外键就是表2中的学号字段,那么这样表1就是主表,表2就是子表. 外键用来干什么 为了一张表记录的数据不要太过冗余. 这和 ...
- customs event
// First create the event var myEvent = new CustomEvent("userLogin", { detail: { username: ...
- Kotlin------数据类型和语法
今天简单的来介绍Kotlin的基本语法.编程语言大多相通的,会基础学起来都很快,理论都一样,实现的代码语言不一样而已. 数值类型 Kotlin 处理数值的方法和 java 很相似,但不是完全一样.比如 ...
- HDU 4665 Mutiples on a circle (圆环DP)
题意 N个数的圆环上有多少种方案可以使得选出来的一段数是K的倍数(N<=50000, K<=200, a[i]<=1000). 思路 多校第七场1004.圆上的DP--大脑太简单处理 ...
- 在阿里云服务器上配置CentOS+Nginx+Python+Flask环境
在阿里云服务器上配置CentOS+Nginx+Python+Flask环境 项目运行环境 阿里云(单核CPU, 1G内存, Ubuntu 14.04 x64 带宽1Mbps), 具体购买和ssh连接阿 ...