In 0th day, there are n-1 people and 1 bloodsucker. Every day, two and only two of them meet. Nothing will happen if they are of the same species, that is, a people meets a people or a bloodsucker meets a bloodsucker. Otherwise, people may be transformed into bloodsucker with probability p. Sooner or later(D days), all people will be turned into bloodsucker. Calculate the mathematical expectation of D.

Input

The number of test cases (TT ≤ 100) is given in the first line of the input. Each case consists of an integer n and a float number p (1 ≤ n < 100000, 0 < p ≤ 1, accurate to 3 digits after decimal point), separated by spaces.

Output

For each case, you should output the expectation(3 digits after the decimal point) in a single line.

Sample Input

1
2 1

Sample Output

1.000

题意:

开始有一个吸血鬼,n-1个平民百姓。每天一个百姓被感染的概率可求,问每个人都变成吸血鬼的天数期望。

思路:

一般期望题逆推,设dp[i]是目前已经有i个吸血鬼,所有人变成吸血鬼的期望。则dp[n]=0;答案是dp[1]。每一个dp[i]的感染概率可求是p[]=2.0*(n-i)*i/(n-1)/n*p;

则可得递推公式: dp[i] = (dp[i+1]*p[]+1)/p[];

#include<cstdio>
#include<cstdlib>
#include<iostream>
using namespace std;
double dp[],p,tmp;
int main()
{
int T,n,i;
scanf("%d",&T);
while(T--){
scanf("%d%lf",&n,&p);
dp[n]=;
for(i=n-;i>=;i--) {
tmp=2.0*(n-i)*i/(n-)/n*p;
dp[i] = (dp[i+]*tmp+)/tmp;
}
printf("%.3lf\n",dp[]);
}
return ;
}

ZOJ3551Bloodsucker (数学期望)的更多相关文章

  1. 【整理】简单的数学期望和概率DP

    数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么 ...

  2. [BZOJ 3143][HNOI2013]游走(数学期望)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143 分析: 易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋 ...

  3. Codeforces Round #259 (Div. 2) C - Little Pony and Expected Maximum (数学期望)

    题目链接 题意 : 一个m面的骰子,掷n次,问得到最大值的期望. 思路 : 数学期望,离散时的公式是E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) p(xi)的是 ...

  4. 数学期望和概率DP题目泛做(为了对应AD的课件)

    题1: Uva 1636 Headshot 题目大意: 给出一个000111序列,注意实际上是环状的.问是0出现的概率大,还是当前是0,下一个还是0的概率大. 问题比较简单,注意比较大小: A/C & ...

  5. [2013山东ACM]省赛 The number of steps (可能DP,数学期望)

    The number of steps nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; ...

  6. 【BZOJ2134】单位错选(数学期望,动态规划)

    [BZOJ2134]单位错选(数学期望,动态规划) 题面 BZOJ 题解 单独考虑相邻的两道题目的概率就好了 没了呀.. #include<iostream> #include<cs ...

  7. 【BZOJ1415】【NOI2005】聪聪和可可(动态规划,数学期望)

    [BZOJ1415][NOI2005]聪聪和可可(动态规划,数学期望) 题面 BZOJ 题解 先预处理出当可可在某个点,聪聪在某个点时 聪聪会往哪里走 然后记忆化搜索一下就好了 #include< ...

  8. 【Luogu1291】百事世界杯之旅(动态规划,数学期望)

    [Luogu1291]百事世界杯之旅(动态规划,数学期望) 题面 洛谷 题解 设\(f[i]\)表示已经集齐了\(i\)个名字的期望 现在有两种方法: 先说我自己的: \[f[i]=f[i-1]+1+ ...

  9. 【BZOJ4872】分手是祝愿(动态规划,数学期望)

    [BZOJ4872]分手是祝愿(动态规划,数学期望) 题面 BZOJ 题解 对于一个状态,如何求解当前的最短步数? 从大到小枚举,每次把最大的没有关掉的灯关掉 暴力枚举因数关就好 假设我们知道了当前至 ...

  10. 【BZOJ3143】游走(高斯消元,数学期望)

    [BZOJ3143]游走(高斯消元,数学期望) 题面 BZOJ 题解 首先,概率不会直接算... 所以来一个逼近法算概率 这样就可以求出每一条边的概率 随着走的步数的增多,答案越接近 (我卡到\(50 ...

随机推荐

  1. POJ 2186 Popular Cows(强连通分量Kosaraju)

    http://poj.org/problem?id=2186 题意: 一个有向图,求出点的个数(任意点可达). 思路: Kosaraju算法的第一次dfs是后序遍历,而第二次遍历时遍历它的反向图,从标 ...

  2. Kaggle 项目之 Digit Recognizer

    train.csv 和 test.csv 包含 1~9 的手写数字的灰度图片.每幅图片都是 28 个像素的高度和宽度,共 28*28=784 个像素点,每个像素值都在 0~255 之间. train. ...

  3. RQNOJ 356 mty的格斗 dp

    PID356 / mty的格斗 题目描述 ’恩 ~~这个和这个也是朋友.把他们放在一起......哇!终于完成了’mty费了好大劲,终于找出了一支最为庞大的军队. fyc很高兴,立马出征与人fight ...

  4. node.js 之 http 架设

    Node.js 安装配置 下载node.js安装mis 打开:cmd cd到node.js安装目录下 输入nodejs --version 显示版本号,证明安装成功 在其根目录下建server.js ...

  5. Java网络编程学习A轮_01_目标与基础复习

    A. A轮目标 复习网络编程基础知识,重点学习下TCP三次握手四次挥手,以及可能引发的异常情况. 回顾 Socket 编程,好多年没写(chao)过相关代码了. 重学 NIO,以前学的基本忘光了,毕竟 ...

  6. Python面向过程和面向对象基础

    总结一下: 面向过程编程:根据业务逻辑从上到下的写代码-----就是一个project写到底,重复利用性比较差 函数式:将某些特定功能代码封装到函数中------方便日后调用 面向对象:对函数进行分类 ...

  7. Spring Cloud实战

    Spring Cloud实战(一)-Spring Cloud Config Server https://segmentfault.com/a/1190000006149891 https://seg ...

  8. 真正在线编辑的在线web编辑器

    最近正在研究开发一款在线web编辑器架构,这是一款真正傻瓜式的web编辑器,可以在正常浏览页面的情况进行编辑,经过测试,对于一般网页页面来说非常好用方便,操作更简单. 一般的在线web编辑器虽说提供了 ...

  9. 常数PK系列汇总

    常数PK系列说明: 在AC的情况下得分=\(\sum_{i=1}^{10}{1000-runtime\_on\_point_i}\) RE会显示UKE UPD:之前的数据太水,导致好多题都在9000分 ...

  10. 搞懂分布式技术12:分布式ID生成方案

    搞懂分布式技术12:分布式ID生成方案 ## 转自: 58沈剑 架构师之路 2017-06-25 一.需求缘起 几乎所有的业务系统,都有生成一个唯一记录标识的需求,例如: 消息标识:message-i ...