001 KNN分类 最邻近算法
1.文件
5.0,3.5,1.6,0.6,apple
5.1,3.8,1.9,0.4,apple
4.8,3.0,1.4,0.3,apple
5.1,3.8,1.6,0.2,apple
4.6,3.2,1.4,0.2,apple
5.3,3.7,1.5,0.2,apple
5.0,3.3,1.4,0.2,apple
7.0,3.2,4.7,1.4,orange
6.4,3.2,4.5,1.5,orange
6.9,3.1,4.9,1.5,orange
5.5,2.3,4.0,1.3,orange
6.5,2.8,4.6,1.5,orange
5.7,2.8,4.5,1.3,orange
6.3,3.3,4.7,1.6,orange
7.3,2.9,6.3,1.8,banana
6.7,2.5,5.8,1.8,banana
7.2,3.6,6.1,2.5,banana
6.5,3.2,5.1,2.0,banana
6.4,2.7,5.3,1.9,banana
6.8,3.0,5.5,2.1,banana
5.7,2.5,5.0,2.0,banana
5.8,2.8,5.1,2.4,banana
2 代码
# -*- coding: UTF-8 -*-
import math
import csv
import random
import operator '''
@author:hunter
@time:2017.03.31
''' class KNearestNeighbor(object):
def __init__(self):
pass def loadDataset(self,filename, split, trainingSet, testSet): # 加载数据集 split以某个值为界限分类train和test
with open(filename, 'r') as csvfile:
lines = csv.reader(csvfile) #读取所有的行
dataset = list(lines) #转化成列表
for x in range(len(dataset)-1):
for y in range(4):
dataset[x][y] = float(dataset[x][y])
if random.random() < split: # 将所有数据加载到train和test中 生成0和1的随机浮点数
trainingSet.append(dataset[x])
else:
testSet.append(dataset[x]) def calculateDistance(self,testdata, traindata, length): # 计算距离
distance = 0 # length表示维度 数据共有几维
for x in range(length):
distance += pow((testdata[x]-traindata[x]), 2)
return math.sqrt(distance) def getNeighbors(self,trainingSet, testInstance, k): # 返回最近的k个边距
distances = []
length = len(testInstance)-1
for x in range(len(trainingSet)): #对训练集的每一个数计算其到测试集的实际距离
dist = self.calculateDistance(testInstance, trainingSet[x], length)
print('训练集:{}-距离:{}'.format(trainingSet[x], dist))
distances.append((trainingSet[x], dist))
distances.sort(key=operator.itemgetter(1)) # 把距离从小到大排列
neighbors = []
for x in range(k): #排序完成后取前k个距离
neighbors.append(distances[x][0])
print(neighbors)
return neighbors def getResponse(self,neighbors): # 根据少数服从多数,决定归类到哪一类
classVotes = {}
for x in range(len(neighbors)):
response = neighbors[x][-1] # 统计每一个分类的多少
if response in classVotes:
classVotes[response] += 1
else:
classVotes[response] = 1 # 初始值为1
print(classVotes.items())
sortedVotes = sorted(classVotes.items(), key=operator.itemgetter(1), reverse=True) #reverse按降序的方式排列
return sortedVotes[0][0] def getAccuracy(self,testSet, predictions): # 准确率计算
correct = 0
for x in range(len(testSet)):
if testSet[x][-1] == predictions[x]: #predictions是预测的和testset实际的比对
correct += 1
print('共有{}个预测正确,共有{}个测试数据'.format(correct,len(testSet)))
return (correct/float(len(testSet)))*100.0 def Run(self):
trainingSet = []
testSet = []
split = 0.75
self.loadDataset(r'testdata.txt', split, trainingSet, testSet) #数据划分
print('Train set: ' + str(len(trainingSet)))
print('Test set: ' + str(len(testSet)))
#generate predictions
predictions = []
k = 3 # 取最近的3个数据
# correct = []
for x in range(len(testSet)): # 对所有的测试集进行测试
neighbors = self.getNeighbors(trainingSet, testSet[x], k) #找到3个最近的邻居
result = self.getResponse(neighbors) # 找这3个邻居归类到哪一类
predictions.append(result)
# print('predictions: ' + repr(predictions)) 返回一个它在python中的描述
# print('>predicted=' + repr(result) + ', actual=' + repr(testSet[x][-1]))
# print(correct)
accuracy = self.getAccuracy(testSet,predictions)
print('Accuracy: ' + repr(accuracy) + '%') if __name__ == '__main__':
a = KNearestNeighbor()
a.Run()
001 KNN分类 最邻近算法的更多相关文章
- Python实现kNN(k邻近算法)
Python实现kNN(k邻近算法) 运行环境 Pyhton3 numpy科学计算模块 计算过程 st=>start: 开始 op1=>operation: 读入数据 op2=>op ...
- 在Ignite中使用k-最近邻(k-NN)分类算法
在本系列前面的文章中,简单介绍了一下Ignite的线性回归算法,下面会尝试另一个机器学习算法,即k-最近邻(k-NN)分类.该算法基于对象k个最近邻中最常见的类来对对象进行分类,可用于确定类成员的关系 ...
- [机器学习] ——KNN K-最邻近算法
KNN分类算法,是理论上比较成熟的方法,也是最简单的机器学习算法之一. 该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别 ...
- knn分类算法学习
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的 ...
- k邻近算法(KNN)实例
一 k近邻算法原理 k近邻算法是一种基本分类和回归方法. 原理:K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该输入实 ...
- 最邻近算法(KNN)识别数字验证码
应用场景 对于简单的数字型验证码的自动识别.前期已经完成的工作是通过切割将验证码图片切割成一个一个的单个数字的图片,并按照对应的数字表征类别进行分类(即哪些图片表示数字7,哪些表示8),将各种数字 ...
- ML之监督学习算法之分类算法一 ———— k-近邻算法(最邻近算法)
一.概述 最近邻规则分类(K-Nearest Neighbor)KNN算法 由Cover 和Hart在1968年提出了最初的邻近算法, 这是一个分类(classification)算法 输入基于实例的 ...
- k最邻近算法——使用kNN进行手写识别
上篇文章中提到了使用pillow对手写文字进行预处理,本文介绍如何使用kNN算法对文字进行识别. 基本概念 k最邻近算法(k-Nearest Neighbor, KNN),是机器学习分类算法中最简单的 ...
- 机器学习---K最近邻(k-Nearest Neighbour,KNN)分类算法
K最近邻(k-Nearest Neighbour,KNN)分类算法 1.K最近邻(k-Nearest Neighbour,KNN) K最近邻(k-Nearest Neighbour,KNN)分类算法, ...
随机推荐
- ES6中的新特性
本人最近学习es6一些方法,难免有些手痒,想着能不能将这些方法总结下,如下 1.数组的扩展 1)首先什么是伪数组 无法直接调用数组方法或期望length属性有什么特殊的行为,但仍可以对真正数组遍历方法 ...
- Tomcat的文件列表服务
今天需要将分析后的日志结果发布到网站上供其他人浏览,虽然用户可以通过直接使用url链接可以访问到对应的文件,但是毕竟还是不方便,没有一个类似文件浏览器的东西,可以直接查看文件夹和文件列表. 其实这样的 ...
- 使用DOSGi在OSGi环境下发布Web Services
前言 Apache CXF是一个开源的服务框架项目,而Distributed OSGi子项目提供了基于OSGi远程服务规范的分布式组件实现.它使用Web Services,HTTP上的SOAP手段实现 ...
- Go - 切片(Slice)
定义 切片本身不是数组,它指向底层的数组或者数组的一部分.因此,可以使用Slice来处理变长数组的应用场景. Silice 是一种引用类型. 1.定义一个空的Slice package main im ...
- 导入城市文件数据(csv)格式demo
页面: js: 后台:
- libvirt- Virsh 所有命令详单
help 打印帮助 attach-device 从一个XML文件附加装置 attach-disk 附加磁盘设备 attach-interface 获 ...
- react-router4 嵌套路由
先直接贴代码 import React from 'react'; import ReactDOM from 'react-dom'; import { HashRouter as Router, R ...
- 第6章Zabbix分布式监控
Zabbix是一个分布式的监控系统.分布式监控适合跨机房.跨地域的网络监控.从多个Proxy收集数据,而每个Proxy可以采集多个设备的数据,从而轻松地构建分布式监控系统. ZabbixProxy可以 ...
- 【Oracle】Oracle 10g利用闪回挽救误删的数据
我们在开发和运维过程中,经常遇到数据被误删除的情况.无论是在应用开发中的Bug,还是修改数据的时候,如果提交了错误数据修改结果,会带来很多问题.一般来说,一旦提交commit事务,我们是不能获取到之前 ...
- LeetCode题解 #12 Integer to Roman
题目大意:给定数字,将其转化为罗马数字的形式 罗马数字其实只有 I V X L C D M 这几种形式,其余均为组合的,去百度了解一下就ok. 所以首先想到的就是,将个.十.百.千位的数字构造出来,然 ...