pandas子集选取的三种方法:[]、.loc[]、.iloc[]
pandas读取Excel、csv文件中的数据时,得到的大多是表格型的二维数据,在pandas中对应的即为DataFrame
数据结构。在处理这类数据时,往往要根据据需求先获取数据中的子集,如某些列、某些行、行列交叉的部分等。可以说子集选取
是一个非常基础、频繁使用的操作,而DataFrame
的子集选取看似简单却有一定复杂性。本文聚焦DataFrame
的子集选取操作逻辑,力求在实战中遇到子集选取操作的需求时"不迷路"。

一、图解DataFrame
DataFrame
是一种二维的表格型数据结构,每一行/列都有对应的标签
和位置序号
。行列标签、位置序号的对应关系如下图所示:

列标签(也叫列名:columns) 行标签(也叫行索引:index)默认为(0, 1, 2, …, n)。这里与位置序号恰好一致。
针对DataFrame
的数据结构,pandas提供了三种获取子集的索引器:[]
、.loc[]
、.iloc[]
。
df[]
:快捷的整行整列选取df.loc[]
:按标签
的行列交叉选取df.iloc[]
:按位置序号
的行列交叉选取
二、整行整列选取:df[]
df['列标签']
,选取单个整列
# 选取“日期”列
df['日期']
df[标签列表]
,选取多个整列
# 选取“最高温”,“最低温”,“风力风向”三列
df[['最高温','最低温','风力风向']]
df[切片]
,选取整行
# 选取行索引值1、2、3的整行。切片左闭右开
df[1:4]
切片语法也支持字符串的索引标签值,如将"日期"列修改为行索引(index)
df1 = df.set_index("日期")

# 下面两个切片选取的行是一样的
df1[1:4] #按位置序号的切片,左闭右开
df1['2021-12-02 周四':'2021-12-04 周六'] # 按行标签的切片,左闭右闭
df[]
语法小结:
df[]
语法中,方括号内输入标签名
或列表
选取的是列;而方括号内输入切片
、条件
选取的是行(条件筛选在下文单独介绍)。df[]
输入切片选取整行时,如果是按照位置序号的切片,左闭右开;按行标签的切片,左闭右闭。
三、行列交叉选取
行列交叉选择,可以通过df.loc[]
和df.iloc[]
两个索引器来实现,两者都需要输入两组参数,先行选择,后列选择。行、列选择都可以是单个标签(序号)、列表和切片。根据需求组合使用,威力强大!
df.loc[行选择,列选择]
。参数面向的是标签
。
df.iloc[行位置序号,列位置序号]
。参数面向的是位置序号
。
行
:单个数值,列
:单个数值
df1.loc['2021-12-05 周日','空气质量指数']
df1.iloc[4,4]

行
:列表,列
:列表
df1.loc[['2021-12-05 周日','2021-12-07 周二'],['最高温','最低温','风力风向']]
df1.iloc[[4,6],[0,1,3]]

行
:切片,列
:切片
df1.loc['2021-12-01 周三':'2021-12-03 周五','天气':'空气质量指数']
df1.iloc[:3,2:5]

行
:切片(全选),列
:列表
df1.loc[:,['最高温','最低温']]
df1.iloc[:,[0,1]]

四、按条件筛选子集
df.[]
、df.loc[]
、df.iloc[]
除了按照行列的标签和位置序号选取子集,还可以使用条件(布尔表达式)筛选子集。
筛选最高温、最低温
将最高温、最低温处理成数值型:
df1.loc[:,'最高温'] = df1['最高温'].str.replace('°','').astype('float32')
df1.loc[:,'最低温'] = df1['最低温'].str.replace('°','').astype('float32')

获取最高温大于10度,最低温小于6度的数据
# df.[]的写法
df1[(df1['最高温']>10) & (df1['最低温']<6)]
# df.loc[]的写法
df1.loc[(df1['最高温']>10) & (df1['最低温']<6),:]
# &与、|或、~非
df1.loc[(df1['最高温']>10) & ~(df1['最低温']>=6),:]

五、函数筛选子集
# 匿名函数lambda表达式,获取最高温大于10度,最低温小于6度的数据
df1.loc[lambda df : (df['最高温']>10) & (df['最低温']<6)]
获取前9天并且空气质量指数为优
# 自定义函数,返回值是布尔数组
def queryData(df):
return df.index.str.startswith('2021-12-0') & df['空气质量指数'].str.endswith('优')
df1.loc[queryData , :]

小结
在pandast提供的df[]
、df.loc[]
、df.iloc[]
这个三种索引器,前两个更为常用。df[]
在整行或者整列获取时更为方便。整行整列选取可以看作是行列交叉选取的一个特例,故df.loc[]
是更为通用的方法,它支持单个标签值、列表多选、切片区间、条件(布尔)表达式、函数调用五种方式索引子集,功能强大。
pandas子集选取的三种方法:[]、.loc[]、.iloc[]的更多相关文章
- 三种方法实现PCA算法(Python)
主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域.它的主要作用是对高维数据进行降维.PCA把原先的n个特征用数目 ...
- Python使用三种方法实现PCA算法[转]
主成分分析(PCA) vs 多元判别式分析(MDA) PCA和MDA都是线性变换的方法,二者关系密切.在PCA中,我们寻找数据集中最大化方差的成分,在MDA中,我们对类间最大散布的方向更感兴趣. 一句 ...
- C#中??和?分别是什么意思? 在ASP.NET开发中一些单词的标准缩写 C#SESSION丢失问题的解决办法 在C#中INTERFACE与ABSTRACT CLASS的区别 SQL命令语句小技巧 JQUERY判断CHECKBOX是否选中三种方法 JS中!=、==、!==、===的用法和区别 在对象比较中,对象相等和对象一致分别指的是什么?
C#中??和?分别是什么意思? 在C#中??和?分别是什么意思? 1. 可空类型修饰符(?):引用类型可以使用空引用表示一个不存在的值,而值类型通常不能表示为空.例如:string str=null; ...
- opencv图像阈值设置的三种方法
1.简单阈值设置 像素值高于阈值时,给这个像素赋予一个新值(可能是白色),否则我们给它赋予另外一种颜色(也许是黑色).这个函数就是 cv2.threshhold().这个函数的第一个参数就是原图像 ...
- Pandas查询数据的几种方法
Pandas查询数据 Pandas查询数据的几种方法 df.loc方法,根据行.列的标签值查询 df.iloc方法,根据行.列的数字位置查询 df.where方法 df.query方法 .loc既能查 ...
- 像画笔一样慢慢画出Path的三种方法(补充第四种)
今天大家在群里大家非常热闹的讨论像画笔一样慢慢画出Path的这种效果该如何实现. 北京-LGL 博客号@ligl007发起了这个话题.然后各路高手踊跃发表意见.最后雷叔 上海-雷蒙 博客号@雷蒙之星 ...
- JAVA之线程同步的三种方法
最近接触到一个图片加载的项目,其中有声明到的线程池等资源需要在系统中线程共享,所以就去研究了一下线程同步的知识,总结了三种常用的线程同步的方法,特来与大家分享一下.这三种方法分别是:synchroni ...
- java解析xml的三种方法
java解析XML的三种方法 1.SAX事件解析 package com.wzh.sax; import org.xml.sax.Attributes; import org.xml.sax.SAXE ...
- 【Android】Eclipse自动编译NDK/JNI的三种方法
[Android]Eclipse自动编译NDK/JNI的三种方法 SkySeraph Sep. 18th 2014 Email:skyseraph00@163.com 更多精彩请直接访问SkySer ...
随机推荐
- ClassNotFoundException: org.springframework.web.context.ContextLoadServlet
web.xml中配置 <!-- 配置spring核心监听器,默认会以 /WEB-INF/applicationContext.xml作为配置文件 --> <listener> ...
- spring-boot-关于配置文件
------------恢复内容开始------------ spring-boot 的配置文件有四个地方: 项目更目录下的config目you录下(自己建) 项目根目录下 resource 目录下的 ...
- 为什么需要域驱动设计DDD?
我们需要 DDD 的因素 – 微服务面试问题
- Netty学习摘记 —— 再谈ChannelHandler和ChannelPipeline
本文参考 本篇文章是对<Netty In Action>一书第六章"ChannelHandler和ChannelPipeline",主要内容为ChannelHandle ...
- GlusterFS(GFS) 分布式存储
GlusterFS(GFS) 分布式存储 GFS 分布式文件系统 目录 一: GlusterFS 概述 1.1 GlusterFS 简介 1.2 GlusterFS特点 1.2.1 扩展性和高性能 ...
- jupyter notebook使用技巧
shift + tab 键可以查看对应源代码(注意:需要先将代码运行才能查看) Jupyter Notebook 的快捷键 Jupyter Notebook 有两种键盘输入模式:1.命令模式,键盘输入 ...
- c/c++中的i++和++i的区别
使用 i++ vs. ++i i++是先赋值再加1 ++i是先加1再赋值 到目前为止,你已经学习了如何编写下面这样的 C++ for 循环: for (int i = 0; i < 10; i+ ...
- Linux 0.11源码阅读笔记-总览
Linux 0.11源码阅读笔记-总览 阅读源码的目的 加深对Linux操作系统的了解,了解Linux操作系统基本架构,熟悉进程管理.内存管理等主要模块知识. 通过阅读教复杂的代码,锻炼自己复杂项目代 ...
- HTML 和 form 表单常用标签
HTML和CSS 常用标签: p:段落,自动换行 span:和div类似,但是默认不换行 br:换行 hr:分割线 h1-h6:标题标签 a:超链接 瞄点:通过给a链接设置#XX作为链接,给需要链接的 ...
- Oracle中between 和 in
select * from test_s where id between 2 and 12; between 就是左右全闭区间. SELECT columnsFROM tablesWHERE col ...