摘要:本篇文章结合灰度三维图像讲解图像顶帽运算和图像黑猫运算,通过Python调用OpenCV函数实现。

本文分享自华为云社区《[Python图像处理] 十三.基于灰度三维图的图像顶帽运算和黑帽运算》,作者: eastmount。

本篇文章继续深入,结合灰度三维图像讲解图像顶帽运算和图像黑猫运算,通过Python调用OpenCV函数实现。

一.图像顶帽运算

图像顶帽运算(top-hat transformation)又称为图像礼帽运算,它是用原始图像减去图像开运算后的结果,常用于解决由于光照不均匀图像分割出错的问题。其公式定义如下:

图像顶帽运算是用一个结构元通过开运算从一幅图像中删除物体,校正不均匀光照的影响,其效果图如下图所示。

在Python中,图像顶帽运算主要调用morphologyEx()实现,其中参数cv2.MORPH_TOPHAT表示顶帽处理,函数原型如下:

dst = cv2.morphologyEx(src, cv2.MORPH_TOPHAT, kernel)

  • src表示原始图像
  • cv2.MORPH_TOPHAT表示图像顶帽运算
  • kernel表示卷积核,可以用numpy.ones()函数构建

假设存在一张光照不均匀的米粒图像,如图所示,我们需要调用图像顶帽运算解决光照不均匀的问题。其Python代码如下所示:

#encoding:utf-8
import cv2
import numpy as np
#读取图片
src = cv2.imread('test06.png', cv2.IMREAD_UNCHANGED)
#设置卷积核
kernel = np.ones((10,10), np.uint8)
#图像顶帽运算
result = cv2.morphologyEx(src, cv2.MORPH_TOPHAT, kernel)
#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

其运行结果如下,它有效地将米粒与背景分离开来。

二.图像黑帽运算

图像底帽运算(bottom-hat transformation)又称为图像黑帽运算,它是用图像闭运算操作减去原始图像后的结果,从而获取图像内部的小孔或前景色中黑点,也常用于解决由于光照不均匀图像分割出错的问题。其公式定义如下:

图像底帽运算是用一个结构元通过闭运算从一幅图像中删除物体,常用于校正不均匀光照的影响。其效果图如下图所示。

在Python中,图像底帽运算主要调用morphologyEx()实现,其中参数cv2.MORPH_BLACKHAT表示底帽或黑帽处理,函数原型如下:

dst = cv2.morphologyEx(src, cv2.MORPH_BLACKHAT, kernel)

  • src表示原始图像
  • cv2.MORPH_BLACKHAT表示图像底帽或黑帽运算
  • kernel表示卷积核,可以用numpy.ones()函数构建

Python实现图像底帽运算的代码如下所示:

#encoding:utf-8
import cv2
import numpy as np
#读取图片
src = cv2.imread('test06.png', cv2.IMREAD_UNCHANGED)
#设置卷积核
kernel = np.ones((10, 10), np.uint8)
#图像黑帽运算
result = cv2.morphologyEx(src, cv2.MORPH_BLACKHAT, kernel)
#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

其运行结果如图所示:

三.基于灰度三维图的顶帽黑帽运算

为什么图像顶帽运算会消除光照不均匀的效果呢?通常可以利用灰度三维图来进行解释该算法。灰度三维图主要调用Axes3D包实现,对原图绘制灰度三维图的代码如下:

# -*- coding: utf-8 -*-
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
#读取图像
img = cv.imread("test06.png")
img = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
imgd = np.array(img) #image类转numpy
#准备数据
sp = img.shape
h = int(sp[0]) #图像高度(rows)
w = int(sp[1]) #图像宽度(colums) of image
#绘图初始处理
fig = plt.figure(figsize=(16,12))
ax = fig.gca(projection="3d")
x = np.arange(0, w, 1)
y = np.arange(0, h, 1)
x, y = np.meshgrid(x,y)
z = imgd
surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm)
#自定义z轴
ax.set_zlim(-10, 255)
ax.zaxis.set_major_locator(LinearLocator(10)) #设置z轴网格线的疏密
#将z的value字符串转为float并保留2位小数
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
# 设置坐标轴的label和标题
ax.set_xlabel('x', size=15)
ax.set_ylabel('y', size=15)
ax.set_zlabel('z', size=15)
ax.set_title("surface plot", weight='bold', size=20)
#添加右侧的色卡条
fig.colorbar(surf, shrink=0.6, aspect=8)
plt.show()

运行结果如下图所示:

从图像中的像素走势显示了该图受各部分光照不均匀的影响,从而造成背景灰度不均现象,其中凹陷对应图像中灰度值比较小的区域。而通过图像白帽运算后的图像灰度三维图的代码如下:

# -*- coding: utf-8 -*-
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
#读取图像
img = cv.imread("test06.png")
img = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
#图像黑帽运算
kernel = np.ones((10,10), np.uint8)
result = cv.morphologyEx(img, cv.MORPH_BLACKHAT, kernel)
#image类转numpy
imgd = np.array(result)
#准备数据
sp = result.shape
h = int(sp[0]) #图像高度(rows)
w = int(sp[1]) #图像宽度(colums) of image
#绘图初始处理
fig = plt.figure(figsize=(8,6))
ax = fig.gca(projection="3d")
x = np.arange(0, w, 1)
y = np.arange(0, h, 1)
x, y = np.meshgrid(x,y)
z = imgd
surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm)
#自定义z轴
ax.set_zlim(-10, 255)
ax.zaxis.set_major_locator(LinearLocator(10)) #设置z轴网格线的疏密
#将z的value字符串转为float并保留2位小数
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
# 设置坐标轴的label和标题
ax.set_xlabel('x', size=15)
ax.set_ylabel('y', size=15)
ax.set_zlabel('z', size=15)
ax.set_title("surface plot", weight='bold', size=20)
#添加右侧的色卡条
fig.colorbar(surf, shrink=0.6, aspect=8)
plt.show()

效果图如下所示,对应的灰度更集中于10至100区间,由此证明了不均匀的背景被大致消除了,有利于后续的阈值分割或图像分割。

点击关注,第一时间了解华为云新鲜技术~

跟我学Python图像处理丨基于灰度三维图的图像顶帽运算和黑帽运算的更多相关文章

  1. Python 图像处理 OpenCV (10):图像处理形态学之顶帽运算与黑帽运算

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  2. Python图像处理丨基于OpenCV和像素处理的图像灰度化处理

    摘要:本篇文章讲解图像灰度化处理的知识,结合OpenCV调用cv2.cvtColor()函数实现图像灰度操作,使用像素处理方法对图像进行灰度化处理. 本文分享自华为云社区<[Python图像处理 ...

  3. 跟我学Python图像处理丨何为图像的灰度非线性变换

    摘要:本文主要讲解灰度线性变换,基础性知识希望对您有所帮助. 本文分享自华为云社区<[Python图像处理] 十六.图像的灰度非线性变换之对数变换.伽马变换>,作者:eastmount . ...

  4. 跟我学Python图像处理丨傅里叶变换之高通滤波和低通滤波

    摘要:本文讲解基于傅里叶变换的高通滤波和低通滤波. 本文分享自华为云社区<[Python图像处理] 二十三.傅里叶变换之高通滤波和低通滤波>,作者:eastmount . 一.高通滤波 傅 ...

  5. 跟我学Python图像处理丨关于图像金字塔的图像向下取样和向上取样

    摘要:本文讲述图像金字塔知识,了解专门用于图像向上采样和向下采样的pyrUp()和pyrDown()函数. 本文分享自华为云社区<[Python图像处理] 二十一.图像金字塔之图像向下取样和向上 ...

  6. 跟我学Python图像处理丨带你掌握傅里叶变换原理及实现

    摘要:傅里叶变换主要是将时间域上的信号转变为频率域上的信号,用来进行图像除噪.图像增强等处理. 本文分享自华为云社区<[Python图像处理] 二十二.Python图像傅里叶变换原理及实现> ...

  7. 跟我学Python图像处理丨图像特效处理:毛玻璃、浮雕和油漆特效

    摘要:本文讲解常见的图像特效处理,从而让读者实现各种各样的图像特殊效果,并通过Python和OpenCV实现. 本文分享自华为云社区<[Python图像处理] 二十四.图像特效处理之毛玻璃.浮雕 ...

  8. 跟我学Python图像处理丨获取图像属性、兴趣ROI区域及通道处理

    摘要:本篇文章主要讲解Python调用OpenCV获取图像属性,截取感兴趣ROI区域,处理图像通道. 本文分享自华为云社区<[Python图像处理] 三.获取图像属性.兴趣ROI区域及通道处理 ...

  9. Python图像处理丨认识图像锐化和边缘提取的4个算子

    摘要:图像锐化和边缘提取技术可以消除图像中的噪声,提取图像信息中用来表征图像的一些变量,为图像识别提供基础. 本文分享自华为云社区<[Python图像处理] 十七.图像锐化与边缘检测之Rober ...

随机推荐

  1. 2021.06.12【NOIP提高B组】模拟 总结

    T1 题目大意:有 \(n\) 个点,到点 \(i\) 可以获得 \(A_i\) ,同时消耗 \(B_i\) 若当前价值小于 \(B_i\) 则不能到,问从 \(P\) 开始,任一点结束后的最大值. ...

  2. ASP.NET Core 应用配置指定地址和端口

    更新记录 本文迁移自Panda666原博客,原发布时间:2021年5月10日. 几种方式 ASP.NET Core 应用配置指定地址和端口支持以下几种主要方式: 1.在命令行模式启动应用时设置 --u ...

  3. Android Jetpack Navigation基本使用

    Android Jetpack Navigation基本使用 本篇主要介绍一下 Android Jetpack 组件 Navigation 导航组件的 基本使用 当看到 Navigation单词的时候 ...

  4. 腾讯视频的qlv格式转换为mp4格式

    1.点击设置->下载设置->缓存管理 下的文件目录复制; 2复制在 我的电脑路径栏目中 找到缓存目录 文件夹vodcache; 3.打开视频对应文件; 4.打开cmd命令窗口 5.跳转 到 ...

  5. 剖析 SPI 在 Spring 中的应用

    vivo 互联网服务器团队 - Ma Jian 一.概述 SPI(Service Provider Interface),是Java内置的一种服务提供发现机制,可以用来提高框架的扩展性,主要用于框架的 ...

  6. BUUCTF-签到题

    签到题 很简单写在介绍里面了.

  7. 某CMS后台通杀getshell

    此CMS是基于thinkphp框架二次开发的,目前有thinkphp5,以及thinkphp6两种版本.这些漏洞挖掘出来的时候已经在cnvd被提交过了.但是网上并没有漏洞文章.避免风险这里只分享思路. ...

  8. ms08-067漏洞复现

    一.环境说明 kali linux 靶机是 XP (xp启动445) 二.nmap扫描主机存在的漏洞 root@kali:~# nmap --script smb-vuln* 192.168.244. ...

  9. Ubuntu系统iptables安全防护整改计划

    端口开放 默认防火墙是开放所有端口的,如果拿来做应用服务器,就很危险,所以要把防火墙用起来,只将需要的端口开放,ubuntu用的是iptables防火墙. iptables处理流程 iptables ...

  10. docker compose 部署 minio

    1.docker-compose.yaml 文件如下: version: '3' services: minio: image: minio/minio:latest # 原镜像`minio/mini ...