音频数字信号处理 Audio DSP (Digital Signal Processing) 是一个复杂又专业的话题,本文介绍的是如何从音频中实时分析和识别出特定频率信号的一种方法,对应的代码为可运行在浏览器中的html5网页版(可移植);可用于识别环境中特定频率的声音、或噪声、乐器弹奏的音调。

在线测试:FFT频域分析ECharts频谱曲线图

900Hz频率的摩尔斯电码声音频谱曲线,为本文的主要分析对象,请见文末生成LOVE对应的电码音频文件,然后把文件拖入上面的这个在线测试页面,即可得到此图:

吉他6根空弦音频谱曲线:

一、网页中的音频数据源

H5网页中获取音频数据的方法至少有三种:

  1. 通过网络请求下载得到音频文件二进制内容(xhrfetch
  2. 通过input[type=file]选择文件,在用FileReader读取获得二进制内容
  3. 通过浏览器的getUserMedia接口访问设备的麦克风,录制得到音频二进制内容

不同音频格式有不同的压缩编码方法,为了得到文件内的音频数据,我们需要解码音频文件,得到音频的采样数据(PCM)才好进行下一步处理;.wav格式的文件解码简单,它是一般是由wav头+pcm数据组合而成的,直接去掉wav头即完成解码,其他文件可通过AudioContextdecodeAudioData方法直接解码成32位pcm再转成16位pcm。

得益于现代浏览器的WebRTC功能加持,网页也能实现丰富的音视频交互,可以实现网页录音,实时采集环境中的声音得到pcm数据,GitHub Recorder是一个功能丰富的H5网页录音开源库,可以方便的进行实时处理录音数据。

二、FFT:时域转频域

我们得到音频的采样数据(PCM)后,可以将此数据按值的大小直接绘制出来,即可得到一个声音的波形,此波形为音频的时域波形:横坐标是时间,纵坐标是采样值的大小,比如在Audition中显示如下图所示(生成此音频文件请见文末)。

在时域波形上,我们能直观的知道在某个时间点是否有声音,和声音的大小,但不知道这个声音是否是我们需要的信号,还是其他杂音;数字信号分析的重头戏出场了:FFT,快速傅里叶变换。

通过FFT可以将单个时域波形分解成N个不同频率的波形,即时域信号变换成频域信号,N取决于fftSize的大小,比如fftSize=1024,将得到512个频率分量;在Audition中可以非常直观的感受到频域信号的强度分布,如下图所示,900Hz的信号非常亮(生成此音频文件请见文末)。

H5 js版的FFT的实现有很多开源代码可以参考,或者直接使用浏览器提供的AudioContextcreateAnalyser接口来进行频域数据变换;Recorder库中的提供了2个FFT实现可以使用:extensions/lib.fft.jsdsp.lib.fft_exact.js,到上文中的在线测试中可以看到这两文件。

js版的FFT变换操作也比较简单,Audition中用到的这个音频文件,在网页中通过变换后得到的频域数据,叠加绘制到一起即得到了文章开头的第一张摩尔斯电码声音频谱曲线图,信号非常明显。

三、信号的特征分析

以文章开头的“900Hz频率的摩尔斯电码声音频谱曲线图”为例,我们通过频谱分析,可以直观的看到信号最强的频率波峰,能量非常集中,频率值分散在900Hz附近,也就是说这段音频中信号的主要频率为900Hz左右,和实际生成此摩尔斯电码所使用的900Hz频率一致。

分析得到了主要频率,我们只关注这个主要频率的波形曲线,也能直观的看出和摩尔斯电码规律一致的特征:持续时间短的是滴(.),持续时间长的是嗒(-),嗒的长度是滴的3倍,滴嗒之间间隔1个滴的长度,字符之间间隔3个滴的长度(单词之间间隔7个滴以上的长度)。

四、信号的识别提取

分析出信号的特征后,就有办法通过编写代码来进行信号的识别和提取,依旧是以上图为例,我们来提取出里面包含的摩尔斯电码。

(1)过滤掉其他能量低的值,中只保留能量集中的几个频率

(2)程序代码中对这几个频率进行综合分析判断,每个波峰取和前面频率相差不大的频率当做有效波峰(这样可有效排除掉杂波干扰),得到一条曲线

(3)根据曲线中的值的大小,较小的值全部当做0,高的保留,最终转换得到断断续续的矩形波,有波峰的地方即为有信号,得到每个波峰的持续时间,即可识别出滴(.)嗒(-),即为摩尔斯电码

Q: 为啥不用PCM的音量大小来直接判断信号?

A: 最后的矩形波看起来和时域的波形包络没有多大区别,这是因为录制的样本中没有比较大的背景杂音干扰;在没有杂音干扰的情况下,直接用PCM的采样值(或音量)来提取信号也是可行的;但在有比较大的干扰的情况下(末尾那段杂音),时域就很难区分出是否是正确的信号,频域中分离出来的波形更能反映出原本的信号。

如果是要根据声音的频率来判断是什么信号,那就必须转到频域来识别处理,比如乐器的音调,时域是完全无法识别出是哪个调的。

附录

  • Recorder用于html5录音:https://github.com/xiangyuecn/Recorder,网页中实时录制获得音频数据。
  • 趣味摩尔斯电码:小程序,微信版和字节抖音版,将文本LOVE转换成摩斯码并播放,录制得到上文中使用的摩尔斯电码音频;内置电码翻译功能,可以实时录制音频并解析出电码,本文所总结的内容即为其音频识别成电码所使用的原理。

【完】

网页js版音频数字信号处理:H5录音+特定频率信号的特征分析和识别提取的更多相关文章

  1. h5 录音 自动生成proto Js语句 UglifyJS-- 对你的js做了什么 【原码笔记】-- protobuf.js 与 Long.js 【微信开发】-- 发送模板消息 能编程与会编程 vue2入坑随记(二) -- 自定义动态组件 微信上传图片

    得益于前辈的分享,做了一个h5录音的demo.效果图如下: 点击开始录音会先弹出确认框: 首次确认允许后,再次录音不需要再确认,但如果用户点击禁止,则无法录音: 点击发送 将录音内容发送到对话框中.点 ...

  2. H5录音音频可视化-实时波形频谱绘制、频率直方图

    这段时间给GitHub Recorder开源库添加了两个新的音频可视化功能,比以前单一的动态波形显示丰富了好多(下图后两行是不是比第一行看起来丰满些):趁热打铁写了一个音频可视化相关扩展测试代码,下面 ...

  3. 数字信号处理与音频处理(使用Audition)

    前一阵子由于考博学习须要,看了<数字信号处理>,之前一直不清除这门课的理论在哪里应用比較广泛. 这次正巧用Audition处理了一段音频,猛然发现<数字信号处理>这门课还是很实 ...

  4. 优化Recorder H5录音:可边录边转码上传服务器,支持微信提供Android IOS Hybrid App源码

    Recorder H5 GitHub开源库随着支持功能的增多,音频转码处理效率渐渐的跟不上需求了,近期抽时间对音频转码部分进行了升级优化,以支持更多实用的功能. 另外IOS的Hybrid App也完成 ...

  5. JS控制音频顺序播放

    做一项目,用到“叫号功能”,网页上有一“叫号”按钮,点击后就读数据库中存的号码,如123号, 然后就发声音出来, 思路是网上下载0123456789的叫号声音,然后按钮点击事件里就在JS里写用那个HT ...

  6. 常见排序算法(JS版)

    常见排序算法(JS版)包括: 内置排序,冒泡排序,选择排序,插入排序,希尔排序,快速排序(递归 & 堆栈),归并排序,堆排序,以及分析每种排序算法的执行时间. index.html <! ...

  7. h5 录音

    得益于前辈的分享,做了一个h5录音的demo.效果图如下: 点击开始录音会先弹出确认框: 首次确认允许后,再次录音不需要再确认,但如果用户点击禁止,则无法录音: 点击发送 将录音内容发送到对话框中.点 ...

  8. js版贪吃蛇

    之前没有写博客的习惯,这是我的第一个博客,有些的不好的地方,希望大家多多提意见 js版的贪吃蛇相对比较简单,废话不多说直接上代码,有需要注意的地方我会标红,github源码地址https://gith ...

  9. FPGA与数字信号处理

    过去十几年,通信与多媒体技术的快速发展极大地扩展了数字信号处理(DSP)的应用范围.眼下正在发生的是,以更高的速度和更低的成本实现越来越复杂的算法,这是针对高级信息服更高带宽以及增强的多媒体处理能力等 ...

  10. 原生js版分页插件

    之前我在自己的博客里发表了一篇用angularJs自定义指令实现的分页插件,今天简单改造了一下,改成了原生JavaScript版本的分页插件,可以自定义一些简单配置,特此记录下来.如有不足之处,欢迎指 ...

随机推荐

  1. Linux 系统环境监测

    Linux系统环境监测 Linux系统环境主要监测CPU.内存.磁盘I/O和网络流量. 1. CPU (1) 查看CPU的负载情况:uptime 可以通过uptime查看系统整体的负载情况. 如果服务 ...

  2. 使用sanic框架实现分布式爬虫

    bee_server.py from sanic import Sanic from sanic import response from urlpool import UrlPool #初始化url ...

  3. [数学建模]层次分析法AHP

    评价类问题. 问题: ① 评价的目标? ② 可选的方案? ③ 评价的指标? 分层 目标层.准则层.方案层 层次分析法可分为四个步骤建立: 第一步:标度确定和构造判断矩阵: 第二步:特征向量,特征根计算 ...

  4. 互斥锁 线程理论 GIL全局解释器锁 死锁现象 信号量 event事件 进程池与线程池 协程实现并发

    目录 互斥锁 multiprocessing Lock类 锁的种类 线程理论 进程和线程对比 开线程的两种方式(类似进程) 方式1 使用Thread()创建线程对象 方式2 重写Thread类run方 ...

  5. python语法之注释

    引言 注释的最大作用是提高程序的可读性,在开发过程中非常有必要加上注释.Python 支持两种类型的注释,分别是单行注释和多行注释. 1 单行注释 Python 使用井号#作为单行注释的符号,语法格式 ...

  6. war包形式安装jenkins

    (1)下载war包 输入命令:java -jar jenkins.war --httpPort=8080,更改端口 重新登录之后,输入密码创建用户等完成设置 (2)结合Tomcat安装: 将jenki ...

  7. python + mysql +djagno +unittest 实现WEB、APP UI自动化测试平台--------(一)基础表

    from django.db import models # Create your models here. class DictConfig(models.Model): "" ...

  8. (admin.E108) The value of 'list_display[0]' refers to 'productname', which is not a callable, an attribute of 'ProductAdmin', or an attribute or method on 'product.Product'.

    models.py # 创建产品表 class Product(models.Model): productName = models.CharField('产品名称', max_length=64) ...

  9. 德摩根定律的证明 De Morgan's law

    De Morgan's Laws Lemma 1: \((\bigcup_n S_n)^c=\bigcap_n S_n^c\) Proof for Lemma 1: \[\because \foral ...

  10. [机器学习] Yellowbrick使用笔记4-目标可视化

    目标可视化工具专门用于直观地描述用于监督建模的因变量,通常称为y目标. 代码下载 当前实现了以下可视化: 平衡箱可视化Balanced Binning:生成带有垂直线的直方图,垂直线显示推荐值点,以将 ...