代码是抄别人的:https://blog.csdn.net/code4101/article/details/38705155。

这篇博客只是用来查看保存,非原创。

#include<iostream>
#include<cassert>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<set>
#include<queue>
#include<vector> using namespace std;
typedef unsigned long long ll;
const int inf=0x7f7f7f7f; struct BigInteger { static const int BASE = 100000000;
static const int WIDTH = 8;
vector<int> s; BigInteger& clean(){while(!s.back()&&s.size()>1)s.pop_back(); return *this;}
BigInteger(ll num = 0) {*this = num;}
BigInteger(string s) {*this = s;}
BigInteger& operator = (long long num) {
s.clear();
do {
s.push_back(num % BASE);
num /= BASE;
} while (num > 0);
return *this;
}
BigInteger& operator = (const string& str) {
s.clear();
int x, len = (str.length() - 1) / WIDTH + 1;
for (int i = 0; i < len; i++) {
int end = str.length() - i*WIDTH;
int start = max(0, end - WIDTH);
sscanf_s(str.substr(start,end-start).c_str(), "%d", &x);
s.push_back(x);
}
return (*this).clean();
} BigInteger operator + (const BigInteger& b) const {
BigInteger c; c.s.clear();
for (int i = 0, g = 0; ; i++) {
if (g == 0 && i >= s.size() && i >= b.s.size()) break;
int x = g;
if (i < s.size()) x += s[i];
if (i < b.s.size()) x += b.s[i];
c.s.push_back(x % BASE);
g = x / BASE;
}
return c;
}
BigInteger operator - (const BigInteger& b) const {
assert(b <= *this); // 减数不能大于被减数
BigInteger c; c.s.clear();
for (int i = 0, g = 0; ; i++) {
if (g == 0 && i >= s.size() && i >= b.s.size()) break;
int x = s[i] + g;
if (i < b.s.size()) x -= b.s[i];
if (x < 0) {g = -1; x += BASE;} else g = 0;
c.s.push_back(x);
}
return c.clean();
}
BigInteger operator * (const BigInteger& b) const {
int i, j; ll g;
vector<ll> v(s.size()+b.s.size(), 0);
BigInteger c; c.s.clear();
for(i=0;i<s.size();i++) for(j=0;j<b.s.size();j++) v[i+j]+=ll(s[i])*b.s[j];
for (i = 0, g = 0; ; i++) {
if (g == 0 && i >= v.size()) break;
ll x = v[i] + g;
c.s.push_back(x % BASE);
g = x / BASE;
}
return c.clean();
}
BigInteger operator / (const BigInteger& b) const {
assert(b > 0); // 除数必须大于0
BigInteger c = *this; // 商:主要是让c.s和(*this).s的vector一样大
BigInteger m; // 余数:初始化为0
for (int i = s.size()-1; i >= 0; i--) {
m = m*BASE + s[i];
c.s[i] = bsearch(b, m);
m -= b*c.s[i];
}
return c.clean();
}
BigInteger operator % (const BigInteger& b) const { //方法与除法相同
BigInteger c = *this;
BigInteger m;
for (int i = s.size()-1; i >= 0; i--) {
m = m*BASE + s[i];
c.s[i] = bsearch(b, m);
m -= b*c.s[i];
}
return m;
}
// 二分法找出满足bx<=m的最大的x
int bsearch(const BigInteger& b, const BigInteger& m) const{
int L = 0, R = BASE-1, x;
while (1) {
x = (L+R)>>1;
if (b*x<=m) {if (b*(x+1)>m) return x; else L = x;}
else R = x;
}
}
BigInteger& operator += (const BigInteger& b) {*this = *this + b; return *this;}
BigInteger& operator -= (const BigInteger& b) {*this = *this - b; return *this;}
BigInteger& operator *= (const BigInteger& b) {*this = *this * b; return *this;}
BigInteger& operator /= (const BigInteger& b) {*this = *this / b; return *this;}
BigInteger& operator %= (const BigInteger& b) {*this = *this % b; return *this;} bool operator < (const BigInteger& b) const {
if (s.size() != b.s.size()) return s.size() < b.s.size();
for (int i = s.size()-1; i >= 0; i--)
if (s[i] != b.s[i]) return s[i] < b.s[i];
return false;
}
bool operator >(const BigInteger& b) const{return b < *this;}
bool operator<=(const BigInteger& b) const{return !(b < *this);}
bool operator>=(const BigInteger& b) const{return !(*this < b);}
bool operator!=(const BigInteger& b) const{return b < *this || *this < b;}
bool operator==(const BigInteger& b) const{return !(b < *this) && !(b > *this);}
}; ostream& operator << (ostream& out, const BigInteger& x) {
out << x.s.back();
for (int i = x.s.size()-2; i >= 0; i--) {
char buf[20];
sprintf_s(buf, "%08d", x.s[i]);
for (int j = 0; j < strlen(buf); j++) out << buf[j];
}
return out;
} istream& operator >> (istream& in, BigInteger& x) {
string s;
if (!(in >> s)) return in;
x = s;
return in;
} int main(){
ios::sync_with_stdio(false);
BigInteger a=string("1234512345123451234512345"),b=string("5432154321543215432154321");
cout<<a+b;
return 0;
}
/* */

算法模板:C++的高精度的更多相关文章

  1. 匈牙利 算法&模板

    匈牙利 算法 一. 算法简介 匈牙利算法是由匈牙利数学家Edmonds于1965年提出.该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法. 二分图的定义: 设G=(V,E)是一个 ...

  2. Tarjan 算法&模板

    Tarjan 算法 一.算法简介 Tarjan 算法一种由Robert Tarjan提出的求解有向图强连通分量的算法,它能做到线性时间的复杂度. 我们定义: 如果两个顶点可以相互通达,则称两个顶点强连 ...

  3. hdu 2255 奔小康赚大钱--KM算法模板

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2255 题意:有N个人跟N个房子,每个人跟房子都有一定的距离,现在要让这N个人全部回到N个房子里面去,要 ...

  4. POJ 1273 Drainage Ditches(网络流dinic算法模板)

    POJ 1273给出M条边,N个点,求源点1到汇点N的最大流量. 本文主要就是附上dinic的模板,供以后参考. #include <iostream> #include <stdi ...

  5. poj 1274 The Perfect Stall【匈牙利算法模板题】

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20874   Accepted: 942 ...

  6. 最短路径---dijkstra算法模板

    dijkstra算法模板 http://acm.hdu.edu.cn/showproblem.php?pid=1874 #include<stdio.h> #include<stri ...

  7. 算法模板学习专栏之总览(会慢慢陆续更新ing)

    博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/7495310.html特别不喜欢那些随便转载别人的原创文章又不给 ...

  8. POJ 1815 - Friendship - [拆点最大流求最小点割集][暴力枚举求升序割点] - [Dinic算法模板 - 邻接矩阵型]

    妖怪题目,做到现在:2017/8/19 - 1:41…… 不过想想还是值得的,至少邻接矩阵型的Dinic算法模板get√ 题目链接:http://poj.org/problem?id=1815 Tim ...

  9. HDU1532最大流 Edmonds-Karp,Dinic算法 模板

    Drainage Ditches Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...

  10. UVA-11183 Teen Girl Squad (最小树形图、朱刘算法模板)

    题目大意:给一张无向图,求出最小树形图. 题目分析:套朱-刘算法模板就行了... 代码如下: # include<iostream> # include<cstdio> # i ...

随机推荐

  1. 剖析虚幻渲染体系(15)- XR专题

    目录 15.1 本篇概述 15.1.1 本篇内容 15.1.2 XR概念 15.1.2.1 VR 15.1.2.2 AR 15.1.2.3 MR 15.1.2.4 XR 15.1.3 XR综述 15. ...

  2. vue组件data函数

    vue组件data通常定义为一个函数并return一个对象,对象中定义的就是组件数据,当然定义数据还有props.computed等方式. data如果直接定义为对象data: {message: ' ...

  3. JavaScript之parseInt()方法

    parseInt(string, radix):用于解析一个字符串并返回指定基数的十进制整数或者NaN string参数为被解析的值,如果该值不是一个字符串,则会隐式的使用toString()方法转化 ...

  4. 【物联网天线选择攻略】2.4GHz 频段增益天线模块设备选择

     天线模块设备(antenna)是一种能量变换器,它把传输线上传播的导行波,变换成在无界媒介中传播的电磁波,或者进行相反的变换.对于设计一个应用于射频系统中的小功率.短距离的2.4GHz无线收发设备, ...

  5. Oracle常见问题解决方法

    1.设置数据库用户的密码有效期为 无限制 --查询proile文件名 SELECT username,PROFILE FROM dba_users; --查询文件 的密码保护策略 SELECT * F ...

  6. WinForms获得已打开窗体的引用

    更新记录 本文迁移自Panda666原博客,原发布时间:2021年7月6日. 对于已经打开的窗口,可以通过Application.OpenForms属性进行获得.该属性是一个FormCollectio ...

  7. 论文阅读 Real-Time Streaming Graph Embedding Through Local Actions 11

    9 Real-Time Streaming Graph Embedding Through Local Actions 11 link:https://scholar.google.com.sg/sc ...

  8. 由ASP.NET Core根据路径下载文件异常引发的探究

    前言 最近在开发新的项目,使用的是ASP.NET Core6.0版本的框架.由于项目中存在文件下载功能,没有使用类似MinIO或OSS之类的分布式文件系统,而是下载本地文件,也就是根据本地文件路径进行 ...

  9. 52 条 SQL 语句性能优化策略,建议收藏

    本文会提到 52 条 SQL 语句性能优化策略. 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在where及order by涉及的列上建立索引. 2.应尽量避免在where子句中对字段进行nul ...

  10. 动画 ---Animejs 简单使用与源码解析

    Anime是什么 Anime有什么用 Anime是作何做的 requireAnimationFrame() engine(){ // 处理让多个帧运动起来 ​ play() ​ step()} ani ...