ClickHouse与Elasticsearch压测实践
1 需求分析
1.1 分析压测对象
1)什么是ClickHouse 和Elasticsearch
ClickHouse 是一个真正的列式数据库管理系统(DBMS)。在 ClickHouse 中,数据始终是按列存储的,包括矢量(向量或列块)执行的过程。只要有可能,操作都是基于矢量进行分派的,而不是单个的值,这被称为«矢量化查询执行»,它有利于降低实际的数据处理开销。
Elasticsearch是一个开源的分布式、RESTful 风格的搜索和数据分析引擎,它的底层是开源库Apache Lucene。 它可以被这样准确地形容:
- 一个分布式的实时文档存储,每个字段可以被索引与搜索
- 一个分布式实时分析搜索引擎
- 能胜任上百个服务节点的扩展,并支持 PB 级别的结构化或者非结构化数据
2)为什么要对他们进行压测
众所周知,ClickHouse在基本场景表现非常优秀,性能优于ES,但是我们实际的业务查询中有很多是复杂的业务查询场景,甚至是大数量的查询,所以为了在双十一业务峰值来到前,确保大促活动峰值业务稳定性,针对ClickHouse 和Elasticsearch在我们实际业务场景中是否拥有优秀的抗压能力,通过这次性能压测,探测系统中的性能瓶颈点,进行针对性优化,从而提升系统性能。
1.2 制定压测目标
为什么会选择这个(queryOBBacklogData)接口呢?
1)从复杂度来看,接口(queryOBBacklogData)查询了5次,代码如下:
/**
* 切ck-queryOBBacklogData
* @param queryBO
* @return
*/
public OutboundBacklogRespBO queryOBBacklogDataCKNew(OutboundBacklogQueryBO queryBO) {
log.info(" queryOBBacklogDataCK入参:{}", JSON.toJSONString(queryBO));
// 公共条件-卡最近十天时间
String commonStartTime = DateUtils.getTime(DateUtil.format(new Date(), DateUtil.FORMAT_DATE), DateUtils.ELEVEN_AM, 1, -10);
String commonEndTime = DateUtils.getTime(DateUtil.format(new Date(), DateUtil.FORMAT_DATE), DateUtils.ELEVEN_AM, 1, 1);
// 越库信息-待越库件数&待越库任务数
WmsObCrossDockQueryBo wmsObCrossDockQueryBo = wmsObCrossDockQueryBoBuilder(queryBO,commonStartTime, commonEndTime);
log.info("queryOBBacklogDataCK-wmsObCrossDockQueryBo: {}", JSON.toJSONString(wmsObCrossDockQueryBo));
CompletableFuture<OutboundBacklogRespBO> preCrossDockInfoCF = CompletableFuture.supplyAsync(
() -> wmsObCrossDockMapper.preCrossDockInfo(wmsObCrossDockQueryBo), executor);
// 集合任务信息-待分配订单
WmsObAssignOrderQueryBo wmsObAssignOrderQueryBo = wmsObAssignOrderQueryBoBuilder(queryBO, commonStartTime, commonEndTime);
log.info("queryOBBacklogDataCK-wmsObAssignOrderQueryBo: {}", JSON.toJSONString(wmsObAssignOrderQueryBo));
CompletableFuture<Integer> preAssignOrderQtyCF = CompletableFuture.supplyAsync(
() -> wmsObAssignOrderMapper.preAssignOrderInfo(wmsObAssignOrderQueryBo), executor);
// 拣货信息-待拣货件数&待拣货任务数
WmsPickTaskQueryBo wmsPickTaskQueryBo = wmsPickTaskQueryBoBuilder(queryBO, commonStartTime, commonEndTime);
log.info("queryOBBacklogDataCK-wmsPickTaskQueryBo: {}", JSON.toJSONString(wmsPickTaskQueryBo));
CompletableFuture<OutboundBacklogRespBO> prePickingInfoCF = CompletableFuture.supplyAsync(
() -> wmsPickTaskMapper.pickTaskInfo(wmsPickTaskQueryBo), executor);
// 分播信息-待分播件数&待分播任务
WmsCheckTaskDetailQueryBo wmsCheckTaskDetailQueryBo = wmsCheckTaskDetailQueryBoBuilder(queryBO, commonStartTime, commonEndTime);
log.info("queryOBBacklogDataCK-wmsCheckTaskDetailQueryBo: {}", JSON.toJSONString(wmsCheckTaskDetailQueryBo));
CompletableFuture<OutboundBacklogRespBO> preSowInfoCF = CompletableFuture.supplyAsync(
() -> wmsCheckTaskDetailMapper.checkTaskDetailInfo(wmsCheckTaskDetailQueryBo), executor);
// 发货信息-待发货件数
WmsOrderSkuQueryBo wmsOrderSkuQueryBo = wmsOrderSkuQueryBoBuilder(queryBO, commonStartTime, commonEndTime);
log.info("queryOBBacklogDataCK-wmsOrderSkuQueryBo: {}", JSON.toJSONString(wmsOrderSkuQueryBo));
CompletableFuture<Integer> preDispatchCF = CompletableFuture.supplyAsync(
() -> wmsOrderSkuMapper.preDispatchInfo(wmsOrderSkuQueryBo), executor);
return processResult(preCrossDockInfoCF, preAssignOrderQtyCF, prePickingInfoCF, preSowInfoCF, preDispatchCF);
}
2)接口(queryOBBacklogData),总共查询了5个表,如下:
wms.wms_ob_cross_dock
wms.wms_ob_assign_order
wms.wms_picking_task.
wms.wms_check_task_detail
wms.wms_order_sku
3)查询的数据量,如下:
select
(ifnull(sum(m.shouldBeCrossedDockQty),
0) -
ifnull(sum(m.satisfiedCrossedDockQty),
0)) as preCrossStockSkuQty,
count(m.docId) as preCrossStockTaskQty
from
wms.wms_ob_cross_dock m final
prewhere
m.createTime >= '2021-12-03 11:00:00'
and m.createTime <= '2021-12-14 11:00:00'
and m.warehouseNo = '279_1'
and m.orderType = '10'
and tenantCode = 'TC90230202'
where
m.deleted = 0
and m.deliveryDestination = '2'
and m.shipmentOrderDeleted = 0
and m.status = 0
从上面SQL截图可以看出,查询待越库件数&待越库任务数,共读了720817行数据
select count(distinct m.orderNo) as preAssignedOrderQty
from wms.wms_ob_assign_order m final
prewhere
m.createTime >= '2021-12-03 11:00:00'
and m.createTime <= '2021-12-14 11:00:00'
and m.warehouseNo = '361_0'
and tenantCode = 'TC90230202'
where m.taskassignStatus = 0
and m.deliveryDestination = 2
and m.stopProductionFlag = 0
and m.deleted = 0
and m.orderType = 10
从上面SQL截图可以看出,查询集合任务信息-待分配订单,共读了153118行数据
select minus(toInt32(ifnull(sum(m.locateQty), toDecimal64(0, 4))),
toInt32(ifnull(sum(m.pickedQty), toDecimal64(0, 4)))) as prePickingSkuQty,
count(distinct m.taskNo) as prePickingTaskQty
from wms.wms_picking_task m final
prewhere
m.shipmentOrderCreateTime >= '2021-12-03 11:00:00'
and m.shipmentOrderCreateTime <= '2021-12-14 11:00:00'
and m.warehouseNo = '286_1'
and tenantCode = 'TC90230202'
where m.pickingTaskDeleted = 0
and m.deliveryDestination = 2
and m.pickLocalDetailDeleted = 0
and m.shipmentOrderDeleted = 0
and m.orderType = 10
and (m.operateStatus = 0 or m.operateStatus = 1)
从上面SQL截图可以看出,查询拣货信息-待拣货件数&待拣货任务数,共读了2673536行数据
select minus(toInt32(ifnull(sum(m.locateQty), toDecimal64(0, 4))),
toInt32(ifnull(sum(m.pickedQty), toDecimal64(0, 4)))) as prePickingSkuQty,
count(distinct m.taskNo) as prePickingTaskQty
from wms.wms_picking_task m final
prewhere
m.shipmentOrderCreateTime >= '2021-12-03 11:00:00'
and m.shipmentOrderCreateTime <= '2021-12-14 11:00:00'
and m.warehouseNo = '279_1'
and tenantCode = 'TC90230202'
where m.pickingTaskDeleted = 0
and m.deliveryDestination = 2
and m.pickLocalDetailDeleted = 0
and m.shipmentOrderDeleted = 0
and m.orderType = 10
and (m.operateStatus = 0 or m.operateStatus = 1)
从上面SQL截图可以看出,查询分播信息-待分播件数&待分播任务,共读了1448149行数据
select ifnull(sum(m.unTrackQty), 0) as unTrackQty
from wms.wms_order_sku m final
prewhere
m.shipmentOrderCreateTime >= '2021-12-03 11:00:00'
and m.shipmentOrderCreateTime <= '2021-12-14 11:00:00'
and m.warehouseNo = '280_1'
and m.orderType = '10'
and m.deliveryDestination = '2'
and tenantCode = 'TC90230202'
where m.shipmentOrderDeleted <> '1'
and m.ckDeliveryTaskDeleted <> '1'
and m.ckDeliveryTaskDetailDeleted <> '1'
and m.ckDeliveryTaskStatus in ('1','0','2')
从上面SQL截图可以看出,查询发货信息-待发货件数,共读了99591行数据
2 测试环境准备
为了尽可能发挥性能压测作用,性能压测环境应当尽可能同线上环境一致,所以我们使用了和线上一样的环境
3 采集工具准备
监控工具
- http://origin.jd.com/ :监控JVM,方法级别监控(提供秒级支持)
- http://console.jex.jd.com/ :提供异常堆栈监控,火焰图监控、线程堆栈分析
- http://x.devops.jdcloud.com/ :支持查看clickhouse/Elasticsearch数据库服务每个节点的cpu使用率
- http://dashboard.fireeye.jdl.cn/ :监测应用服务器cpu使用率、内存使用率
4 压测执行及结果分析
4.1 编写压测脚本工具
Forcebot(http://forcebot.jd.com) 是专门为开发人员、测试人员提供的性能测试平台,通过编写脚本、配置监控、设置场景、启动任务、实时监控、日志定位、导出报告一系列操作流程来完成性能测试,灵活的脚本配置满足同步、异步、集合点等多种发压模式。
帮助文档(http://doc.jd.com/forcebot/helper/)
4.2 设计压测数据
4.2.1 前期压测中名词解释
- DBCP:数据库连接池,是 apache 上的一个Java连接池项目。DBCP通过连接池预先同数据库建立一些连接放在内存中(即连接池中),应用程序需要建立数据库连接时直接到从接池中申请一个连接使用,用完后由连接池回收该连接,从而达到连接复用,减少资源消耗的目的。
- maxTotal:是连接池中总连接的最大数量,默认值8
- max_thread:clickhouse中底层配置,处理SQL请求时使用的最大线程数。默认值是clickhouse服务器的核心数量。
- coordinating:协调节点数,主要作用于请求转发,请求响应处理等轻量级操作
- 数据节点:主要是存储索引数据的节点,主要对文档进行增删改查操作,聚合操作等。数据节点对cpu,内存,io要求较高, 在优化的时候需要监控数据节点的状态,当资源不够的时候,需要在集群中添加新的节点
4.2.2 压测数据
clickhouse数据服务:32C128G6节点2副本
应用服务器:4核8G2
maxTotal=16
注:每次压测前,一定要观察每个数据节点的cpu使用率
注:从上面压测过程中,序号6-12可以看出,并发用户数在增加,但tps没有幅度变化,检查发现bigdata dbcp数据库链接池最大线程数未配置,默认最大线程数是8,并发用户数增加至8以后,clickhouse cpu稳定在40%~50%之间不再增加,应用服务器CPU稳定在25%左右。
之后我们调整maxTotal=50,通过调整max_thread不同的值,数据库节点CPU使用率保持在50%左右,来查看相应的监测数据指标:应用服务CPU使用率、TPS、TP99、并发用户数。
clickhouse数据节点,CPU使用率:
Elasticsearch数据服务:32C128G6节点2副本
应用服务器:4核8G2
Elasticsearch同样保持数据库服务CPU使用率达到(50%左右),再监控数据指标tps、tp99
调整指标如下:coordinating协调节点数、 数据节点、poolSize
指标1:coordinating=2,数据节点=4,poolSize=400
注:在压测的过程中发现,coordinating节点的cpu使用率达到51.69%,负载均衡的作用受限,所以协调节点需扩容2个节点
指标2:coordinating=4,数据节点=5,poolSize=800
注:在压测的过程中,发现CPU使用率(数据库)ES数据节点在40%左右的时候,一直上不去,查看日志发现activeCount已经达到797,需要增加poolSize值
指标3:coordinating=4,数据节点=5,poolSize=1200
注:压测过程中,发现coordinating协调节点还是需要扩容,不能支持现在数据节点cpu使用率达到50%
Elasticsearch数据节点及协调节点,CPU使用率:
我们在压测的过程中发现一些之前在开发过程中没发现的问题,首先bdcp数bigdata应用服务器,使用的线程池最大线程数为8时,成为瓶颈,用户数增加至8以后, clickhouse的cpu稳定在40%~50%之间不在增加,应用服务器CPU稳定在25%左右,其次warehouse集群协调节点配置低,协调节点CPU使用率高,最后是clickhouse-jdbc JavaCC解析sql效率低。
4.3 结果分析
4.3.1 测试结论
1)clickhouse对并发有一定的支持,并不是不支持高并发,可以通过调整max_thread提高并发
- max_thread=32时,支持最大TPS 是37,相应TP99是122
- max_thread=2时,支持最大TPS 是66,相应TP99是155
- max_thread=1时,支持最大TPS 是86,相应TP99是206
2)在并发方面Elasticsearch比clickhouse支持的更好,但是相应的响应速度慢很多
- Elasticsearch:对应的TPS是192,TP99是3050
- clickhouse:对应的TPS 是86,TP99是206
综合考量,我们认为clickhouse足以支撑我们的业务诉求
4.3.2 优化建议
- 对ES协调节点进行扩容
- bigdata应用线程池最大线程数调高至200
- bigdata应用 dbcp线程池maxTotal设置成50
- 读取配置文件工具类增加内存缓存
作者:潘雪艳
ClickHouse与Elasticsearch压测实践的更多相关文章
- jmeter压测实践
技巧一:命令行执行 命令执行:指定参数,报告的存储位置 jmeter -n -t baidu_requests_results.jmx -r -l baidu_requests_results.jtl ...
- 在Mac上利用压测工具Jmeter-Suite进行一次压测实践的保姆级详细步骤(参考腾讯云文章)
参考的文章 压测工具Jmeter-Suite详细操作步骤 写此文的目的 由于我是刚开始接触kubernetes和jmeter,所以在学习过程中遇到了很多很多问题,同时我很烦恼为什么网上没有文章是从真正 ...
- JMeter接口压测和性能监测
JMeter接口压力测试总结 一.安装JMeter 1. 在客户端机器上安装JMeter压测工具,我这里安装的版本是apache-jmeter-5.2.1,由于JMeter是JAVA语言开发的 ...
- 高德全链路压测平台TestPG的架构与实践
导读 2018年十一当天,高德DAU突破一个亿,不断增长的日活带来喜悦的同时,也给支撑高德业务的技术人带来了挑战.如何保障系统的稳定性,如何保证系统能持续的为用户提供可靠的服务?是所有高德技术人面临的 ...
- ESRally压测ElasticSearch性能 CentOS 7.5 安装 Python3.7
1,CentOS 7.5 安装 Python3.7 1.安装开发者工具 yum -y groupinstall "Development Tools"2.安装Python编译依赖包 ...
- 软件性能测试分析与调优实践之路-JMeter对RPC服务的性能压测分析与调优-手稿节选
一.JMeter 如何通过自定义Sample来压测RPC服务 RPC(Remote Procedure Call)俗称远程过程调用,是常用的一种高效的服务调用方式,也是性能压测时经常遇到的一种服务调用 ...
- elasticsearch系列(二) esrally压测
环境准备 linux centOS(工作环境) python3.4及以上 pip3 JDK8 git1.9及以上 gradle2.13级以上 准备过程中的坑 这些环境准备没什么太大问题,都是wget下 ...
- SwingBench 字符模式压测最佳实践
之前写过<使用SwingBench 对Oracle RAC DB性能 压力测试>,使用的是最基础直观的图形模式,已经可以满足大多数需求. 但是在有些场景下,图形模式可能本身消耗资源过大,尤 ...
- 全链路压测平台(Quake)在美团中的实践
背景 在美团的价值观中,以“客户为中心”被放在一个非常重要的位置,所以我们对服务出现故障越来越不能容忍.特别是目前公司业务正在高速增长阶段,每一次故障对公司来说都是一笔非常不小的损失.而整个IT基础设 ...
随机推荐
- 开发工具-SQL Server官方下载地址
更新记录 2022年6月10日 完善标题. https://www.microsoft.com/zh-cn/sql-server/sql-server-downloads 相关链接: SSMS下载地址 ...
- Mybatisi和Spring整合源码分析
一.MybatisSpring的使用 1.创建 Maven 工程. 2.添加依赖,代码如下 <dependency> <groupId>org.mybatis</grou ...
- Redis实现延迟队列的正确姿势
在之前探讨延时队列的文章中我们提到了 redisson delayqueue 使用 redis 的有序集合结构实现延时队列,遗憾的是 go 语言社区中并无类似的库.不过问题不大,没有轮子我们自己造. ...
- python+anaconda+pycharm的使用
研一开学的时候开始接触了这些,但是对于其各种功能感到十分混乱,现在通过这篇博文将其功能详细的写出来. 1.python解释器 首先要了解python解释器,我们俗称的下载python也就是下载pyth ...
- 一文掌握GitHub Actions基本概念与配置
CI/CD包含很多流程,如拉取代码.测试.构建打包.登录远程服务器.部署发布等等. 而Github Actions是GitHub推出的一个CI/CD工具,类似工具还有TravisCI.Jenkins等 ...
- Spring框架系列(7) - Spring IOC实现原理详解之IOC初始化流程
上文,我们看了IOC设计要点和设计结构:紧接着这篇,我们可以看下源码的实现了:Spring如何实现将资源配置(以xml配置为例)通过加载,解析,生成BeanDefination并注册到IoC容器中的. ...
- 揭开Vue异步组件的神秘面纱
简介 在大型应用里,有些组件可能一开始并不显示,只有在特定条件下才会渲染,那么这种情况下该组件的资源其实不需要一开始就加载,完全可以在需要的时候再去请求,这也可以减少页面首次加载的资源体积,要在Vue ...
- Redis 笔记 01:入门篇
Redis 笔记 01:入门篇 ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ...
- 扩展-PageHelper分页插件
1.PageHelper 分页插件简介 1) PageHelper是MyBatis中非常方便的第三方分页插件 2) 官方文档: https://github.com/pagehelper/Mybati ...
- 基于MATLAB静态目标分割的药板胶囊检测
一.目标 1 将药板从黑色背景中分离(药板部分显示为白色,背景显示为黑色): 2 根据分割结果将药板旋转至水平: 3 提取药板中的药丸的位置信息: 二.方法描述 处理图像如下: (1)首先将图像转为灰 ...