1. 概述

在之前的文章中说到,一种材质对应一次绘制调用的指令。即使是这种情况,两个三维物体使用同一种材质,但它们使用的材质参数不一样,那么最终仍然会造成两次绘制指令。原因在于,图形工作都是一种状态机,状态发生了变化,就必须进行一次绘制调用指令。

GPU实例化用于解决这样的问题:对于像草地、树木这样的物体,它们往往是数据量很大,但同时又只存在微小的差别如位置、姿态、颜色等。如果像常规物体那样进行渲染,所使用的绘制指令必然很多,资源占用必然很大。一个合理的策略就是,我们指定一个需要绘制物体对象,以及大量该对象不同的参数,然后根据参数在一个绘制调用中绘制出来——这就是所谓的GPU实例化。

2. 详论

首先,我们创建一个空的GameObject对象,并且挂接如下脚本:

using UnityEngine;

//实例化参数
public struct InstanceParam
{
public Color color;
public Matrix4x4 instanceToObjectMatrix; //实例化到物方矩阵
} [ExecuteInEditMode]
public class Note6Main : MonoBehaviour
{
public Mesh mesh;
public Material material; int instanceCount = 200;
Bounds instanceBounds; ComputeBuffer bufferWithArgs = null;
ComputeBuffer instanceParamBufferData = null; // Start is called before the first frame update
void Start()
{
instanceBounds = new Bounds(new Vector3(0, 0, 0), new Vector3(100, 100, 100)); uint[] args = new uint[5] { 0, 0, 0, 0, 0 };
bufferWithArgs = new ComputeBuffer(1, args.Length * sizeof(uint), ComputeBufferType.IndirectArguments);
int subMeshIndex = 0;
args[0] = mesh.GetIndexCount(subMeshIndex);
args[1] = (uint)instanceCount;
args[2] = mesh.GetIndexStart(subMeshIndex);
args[3] = mesh.GetBaseVertex(subMeshIndex);
bufferWithArgs.SetData(args); InstanceParam[] instanceParam = new InstanceParam[instanceCount]; for (int i = 0; i < instanceCount; i++)
{
Vector3 position = Random.insideUnitSphere * 5;
Quaternion q = Quaternion.Euler(Random.Range(0.0f, 90.0f), Random.Range(0.0f, 90.0f), Random.Range(0.0f, 90.0f));
float s = Random.value;
Vector3 scale = new Vector3(s, s, s); instanceParam[i].instanceToObjectMatrix = Matrix4x4.TRS(position, q, scale);
instanceParam[i].color = Random.ColorHSV();
} int stride = System.Runtime.InteropServices.Marshal.SizeOf(typeof(InstanceParam));
instanceParamBufferData = new ComputeBuffer(instanceCount, stride);
instanceParamBufferData.SetData(instanceParam);
material.SetBuffer("dataBuffer", instanceParamBufferData);
material.SetMatrix("ObjectToWorld", Matrix4x4.identity);
} // Update is called once per frame
void Update()
{
if(bufferWithArgs != null)
{
Graphics.DrawMeshInstancedIndirect(mesh, 0, material, instanceBounds, bufferWithArgs, 0);
}
} private void OnDestroy()
{
if (bufferWithArgs != null)
{
bufferWithArgs.Release();
} if(instanceParamBufferData != null)
{
instanceParamBufferData.Release();
}
}
}

这个脚本的意思是,设置一个网格和一个材质,通过随机获取的实例化参数,渲染这个网格的多个实例:

GPU实例化的关键接口是Graphics.DrawMeshInstancedIndirect()。Graphics对象的一系列接口是Unity的底层API,它是需要每一帧调用的。Graphics.DrawMeshInstanced()也可以实例绘制,但是最多只能绘制1023个实例。所以还是Graphics.DrawMeshInstancedIndirect()比较好。

实例化参数InstanceParam和GPU缓冲区参数bufferWithArgs都是存储于一个ComputeBuffer对象中。ComputeBuffe定义了一个GPU数据缓冲区对象,能够映射到Unity Shader中的 StructuredBuffer中。实例化参数InstanceParam存储了每个实例化对象的位置,姿态、缩放以及颜色信息,通过Material.SetBuffer(),传递到着色器中:

Shader "Custom/SimpleInstanceShader"
{
Properties
{
}
SubShader
{
Tags{"Queue" = "Geometry"} Pass
{
CGPROGRAM
#include "UnityCG.cginc"
#pragma vertex vert
#pragma fragment frag
#pragma target 4.5 sampler2D _MainTex; float4x4 ObjectToWorld; struct InstanceParam
{
float4 color;
float4x4 instanceToObjectMatrix;
}; #if SHADER_TARGET >= 45
StructuredBuffer<InstanceParam> dataBuffer;
#endif //顶点着色器输入
struct a2v
{
float4 position : POSITION;
float3 normal: NORMAL;
float2 texcoord : TEXCOORD0;
}; //顶点着色器输出
struct v2f
{
float4 position: SV_POSITION;
float2 texcoord: TEXCOORD0;
float4 color: COLOR;
}; v2f vert(a2v v, uint instanceID : SV_InstanceID)
{
#if SHADER_TARGET >= 45
float4x4 instanceToObjectMatrix = dataBuffer[instanceID].instanceToObjectMatrix;
float4 color = dataBuffer[instanceID].color;
#else
float4x4 instanceToObjectMatrix = float4x4(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
float4 color = float4(1.0f, 1.0f, 1.0f, 1.0f);
#endif float4 localPosition = mul(instanceToObjectMatrix, v.position);
//float4 localPosition = v.position;
float4 worldPosition = mul(ObjectToWorld, localPosition); v2f o;
//o.position = UnityObjectToClipPos(v.position);
o.position = mul(UNITY_MATRIX_VP, worldPosition);
o.texcoord = v.texcoord;
o.color = color; return o;
} fixed4 frag(v2f i) : SV_Target
{
return i.color;
} ENDCG
}
} Fallback "Diffuse"
}

这是一个改进自《Unity3D学习笔记3——Unity Shader的初步使用》的简单实例化着色器。实例化绘制往往位置并不是固定的,这意味着Shader中获取的模型矩阵UNITY_MATRIX_M一般是不正确的。因而实例化绘制的关键就在于对模型矩阵的重新计算,否则绘制的位置是不正确的。实例化的数据往往位置比较接近,所以可以先传入一个基准位置(矩阵ObjectToWorld),然后实例化数据就可以只传入于这个位置的相对矩阵(instanceToObjectMatrix)。

最终的运行结果如下,绘制了大量不同位置、不同姿态、不同大小以及不同颜色的胶囊体,并且性能基本上不受影响。

3. 参考

  1. 《Unity3D学习笔记3——Unity Shader的初步使用》
  2. Graphics.DrawMeshInstanced

具体实现代码

Unity3D学习笔记6——GPU实例化(1)的更多相关文章

  1. Unity3D学习笔记7——GPU实例化(2)

    目录 1. 概述 2. 详论 2.1. 实现 2.2. 解析 3. 参考 1. 概述 在上一篇文章<Unity3D学习笔记6--GPU实例化(1)>详细介绍了Unity3d中GPU实例化的 ...

  2. Unity3D学习笔记8——GPU实例化(3)

    目录 1. 概述 2. 详论 2.1. 自动实例化 2.2. MaterialPropertyBlock 3. 参考 1. 概述 在前两篇文章<Unity3D学习笔记6--GPU实例化(1)&g ...

  3. unity3d学习笔记(一) 第一人称视角实现和倒计时实现

    unity3d学习笔记(一) 第一人称视角实现和倒计时实现 1. 第一人称视角 (1)让mainCamera和player(视角对象)同步在一起 因为我们的player是生成的,所以不能把mainCa ...

  4. Unity3D学习笔记2——绘制一个带纹理的面

    目录 1. 概述 2. 详论 2.1. 网格(Mesh) 2.1.1. 顶点 2.1.2. 顶点索引 2.2. 材质(Material) 2.2.1. 创建材质 2.2.2. 使用材质 2.3. 光照 ...

  5. Unity3D学习笔记3——Unity Shader的初步使用

    目录 1. 概述 2. 详论 2.1. 创建材质 2.2. 着色器 2.2.1. 名称 2.2.2. 属性 2.2.3. SubShader 2.2.3.1. 标签(Tags) 2.2.3.2. 渲染 ...

  6. Unity3D学习笔记4——创建Mesh高级接口

    目录 1. 概述 2. 详论 3. 其他 4. 参考 1. 概述 在文章Unity3D学习笔记2--绘制一个带纹理的面中使用代码的方式创建了一个Mesh,不过这套接口在Unity中被称为简单接口.与其 ...

  7. Unity3D学习笔记12——渲染纹理

    目录 1. 概述 2. 详论 3. 问题 1. 概述 在文章<Unity3D学习笔记11--后处理>中论述了后处理是帧缓存(Framebuffer)技术实现之一:而另外一个帧缓存技术实现就 ...

  8. 一步一步学习Unity3d学习笔记系1.3 英雄联盟服务器集群架构猜想

    说到了网游那就涉及到服务器了,时下最火的属英雄联盟了,我也是它的粉丝,每周必撸一把,都说小撸怡情,大撸伤身,强撸灰飞烟灭,也告诫一下同仁们,注意身体,那么他的服务器架构是什么呢,给大家分享一下, 具体 ...

  9. Unity3D 学习笔记

    不是什么技术文章,纯粹是我个人学习是遇到一些觉得需要注意的要点,当成笔记. 1.关于调试,在Android下无法断点,Debug也无法查看,查看日志方法可以启动adb的log功能,或者自己写个GUI控 ...

随机推荐

  1. python基础练习题(题目 画菱形)

    day15 --------------------------------------------------------------- 实例022:画菱形 题目 打印出如下图案(菱形):. * * ...

  2. 【面试普通人VS高手系列】Dubbo的服务请求失败怎么处理?

    今天分享的面试题,几乎是90%以上的互联网公司都会问到的问题. "Dubbo的服务请求失败怎么处理"? 对于这个问题,我们来看一下普通人和高手的回答. 普通人: 嗯- 我记得, D ...

  3. Luffy /2/ 后台数据库配置&前台创建配置

    目录 二次封装Response 后台数据库配置 命令操作 pycharm连接 django操作mysql 方式一 方式二 user表设计 前台创建及配置 全局css样式配置 配置文件配置 二次封装Re ...

  4. petite-vue源码剖析-沙箱模型

    在解析v-if和v-for等指令时我们会看到通过evaluate执行指令值中的JavaScript表达式,而且能够读取当前作用域上的属性.而evaluate的实现如下: const evalCache ...

  5. zookeeper篇-watch命令

    点赞再看,养成习惯,微信搜索「小大白日志」关注这个搬砖人. 文章不定期同步公众号,还有各种一线大厂面试原题.我的学习系列笔记. 每个路径节点都有一个watcher监控,当该节点数据改变时(CRUD), ...

  6. linux下can调试工具canutils安装与使用

    0.  编译环境所需要的工具 libsocketcan-0.0.11.tar.bz2 canutils-4.0.6.tar.bz2 下载路径 https://public.pengutronix.de ...

  7. QtWebEngine性能问题

    目录 1. 概述 2. 详论 2.1. 图形属性设置 2.2. 硬件加速设置 2.3. Qt6 3. 参考 1. 概述 Qt的Qt WebEngine模块是基于Chromium项目,但是本人在使用QW ...

  8. 新鲜出炉:appium2.0+ 单点触控和多点触控新的解决方案

    在 appium2.0 之前,在移动端设备上的触屏操作,单手指触屏和多手指触屏分别是由 TouchAction 类,Multiaction 类实现的. 在 appium2.0 之后,这 2 个方法将会 ...

  9. js动态生成vue组件

    代码奉上 install (Vue, options) { Vue.prototype.$message = function (message){ let Constructor = Vue.ext ...

  10. REST APIs

    REST APIs 旨在通过HTTP 的动作语义METHOD, 以替代各种传统CRUD 操作所带来的命名问题,例如 "/userAdd"."/userDelete&quo ...