(线段树 + 思维)or 动态dp

[Problem - F - Codeforces](https://codeforces.com/contest/1743/problem/E)

题意

数轴上有 \(n\) 个线段 \([l,r]\;(0<=l<=r<=3*10^5)\) ,表示有一个集合 \(s_i\) 为 \([l,r]\)

有三种集合运算,交、并、异或(两个集合异或 = 并 - 交)

\(S=s_i\;op\;s_2\;op\;...\;op\;s_n\) ,对于 \(n-1\) 个 op 的选择,有 \(3^{n-1}\) 种,求这 \(3^{n-1}\) 个 S 的大小之和

思路1

  1. 单独考虑一个元素 \(x\), 设 \(a\) 为包含 x 的一个集合,\(b\) 为不包含 \(x\) 的一个集合

  2. 关键是发现如下性质:

    1. 两个 b 搞不出来 x
    2. a 交,并 a 可以保留 x,有 2 种
    3. a 并,异或 b 可以保留 x,有 2 种
  3. 因此若最终想保留 x,则需要找到最后一个包含 x 的集合的下标 last (用线段树来维护单点最大值和区间赋值)

    前 last - 2 个操作无所谓;后面的 n - last + 1 个操作只有 2 种选择才能保留 x

    因此保留 x 的方案数为 \(3^{last-2}*2^{n-last+1}\) 个

思路2

  1. 同样单独考虑一个元素 x

  2. 设 \(f[i][0/1]\) 表示前 i 个集合操作完后,x 是否在当前集合中的方案数

  3. 当 x 在 \(s_i\) 中时

    1. \(f[i][0]=f[i-1][0]+f[i-1][1]\)
    2. \(f[i][1]=2*f[i-1][0]+2*f[i-1][1]\)

    当 x 不在 \(s_i\) 中时

    1. \(f[i][0]=3*f[i-1][0]+f[i-1][1]\)
    2. \(f[i][1]=2*f[i-1][1]\)
  4. 但这样转移的复杂度为 \(O(n*3e5)\)

  5. 由于每个集合都是一个区间,可以用线段树来优化,可以对每个区间中所有数整体来转移

  6. 上述转移可写成矩阵的形式:

    1. x 在 \(s_i\) 中时
    \[\begin{bmatrix}
    f[i][0]\\
    f[i][1]
    \end{bmatrix}=
    \begin{bmatrix}
    1&1\\
    2&2
    \end{bmatrix}*
    \begin{bmatrix}
    f[i-1][0]\\
    f[i-1][1]
    \end{bmatrix}
    \]
    1. x 不在 \(s_i\) 中时
      \[\begin{bmatrix}
      f[i][0]\\
      f[i][1]
      \end{bmatrix}=
      \begin{bmatrix}
      3&1\\
      2&0
      \end{bmatrix}*
      \begin{bmatrix}
      f[i-1][0]\\
      f[i-1][1]
      \end{bmatrix}
      \]
  7. 可用线段树对一个区间整体乘上一个矩阵

代码1

#include <bits/stdc++.h>
using namespace std;
#define endl "\n" typedef long long ll;
typedef pair<int, int> PII; const int N = 3e5 + 10;
const int mod = 998244353;
int n;
struct SegmentTree {
#define ls u << 1
#define rs u << 1 | 1
struct T {
int l, r;
ll v;
ll add;
}tr[N << 2];
void pushup(int u) {
tr[u].v = max(tr[ls].v, tr[rs].v);
}
void update(T& rt, int add) {
rt.add = add, rt.v = add;
}
void pushdown(int u) {
if (tr[u].add) {
update(tr[ls], tr[u].add);
update(tr[rs], tr[u].add);
tr[u].add = 0;
}
}
void build(int u, int l, int r) {
tr[u].l = l, tr[u].r = r, tr[u].v = tr[u].add = 0;
if (tr[u].l == tr[u].r) {
return ;
}
int mid = (tr[u].l + tr[u].r) >> 1;
build(ls, l, mid), build(rs, mid + 1, r);
pushup(u);
return ;
}
void modify(int u, int l, int r, int v) {
if (tr[u].l >= l && tr[u].r <= r) {
update(tr[u], v);
return ;
}
pushdown(u);
int mid = (tr[u].l + tr[u].r) >> 1;
if (l <= mid) modify(ls, l, r, v);
if (r > mid) modify(rs, l, r, v);
pushup(u);
return ;
}
int query(int u, int l, int r) {
if (tr[u].l >= l && tr[u].r <= r) {
return tr[u].v;
}
pushdown(u);
int mid = (tr[u].l + tr[u].r) >> 1;
int res = 0;
if (l <= mid) res = query(ls, l, r);
if (r > mid) res = max(res, query(rs, l, r));
return res;
}
}tr; ll qmi(ll a, ll b)
{
ll ans = 1;
while(b)
{
if (b & 1)
ans = ans * a % mod;
b >>= 1;
a = a * a % mod;
}
return ans;
} int main()
{
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cin >> n;
tr.build(1, 0, N - 10);
for (int i = 1; i <= n; i++)
{
int l, r;
cin >> l >> r;
tr.modify(1, l, r, i);
}
ll ans = 0;
for (int i = 0; i <= N - 10; i++)
{
int last = tr.query(1, i, i);
if (last == 0)
continue;
int a = max(0, last - 2);
int b = n - 1 - a;
ans += qmi(3, a) * qmi(2, b) % mod;
ans %= mod;
}
cout << ans << endl;
return 0;
}

Educational Codeforces Round 137 (Rated for Div. 2) - F. Intersection and Union的更多相关文章

  1. Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings

    Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...

  2. Educational Codeforces Round 71 (Rated for Div. 2)-F. Remainder Problem-技巧分块

    Educational Codeforces Round 71 (Rated for Div. 2)-F. Remainder Problem-技巧分块 [Problem Description] ​ ...

  3. Educational Codeforces Round 137 (Rated for Div. 2) A-F

    比赛链接 A 题解 知识点:数学. \(4\) 位密码,由两个不同的数码组成,一共有 \(C_4^2\) 种方案.从 \(10-n\) 个数字选两个,有 \(C_{10-n}^2\) 种方案.结果为 ...

  4. Educational Codeforces Round 50 (Rated for Div. 2) F - Relatively Prime Powers(数学+容斥)

    题目链接:http://codeforces.com/contest/1036/problem/F 题意: 题解:求在[2,n]中,x != a ^ b(b >= 2 即为gcd)的个数,那么实 ...

  5. Educational Codeforces Round 58 (Rated for Div. 2) F dp + 优化(新坑) + 离线处理

    https://codeforces.com/contest/1101/problem/F 题意 有n个城市,m辆卡车,每辆卡车有起点\(s_i\),终点\(f_i\),每公里油耗\(c_i\),可加 ...

  6. Educational Codeforces Round 42 (Rated for Div. 2)F - Simple Cycles Edges

    http://codeforces.com/contest/962/problem/F 求没有被两个及以上的简单环包含的边 解法:双联通求割顶,在bcc中看这是不是一个简单环,是的话把整个bcc的环加 ...

  7. Educational Codeforces Round 41 (Rated for Div. 2)F. k-substrings

    题意比较麻烦略 题解:枚举前缀的中点,二分最远能扩展的地方,lcp来check,然后线段树维护每个点最远被覆盖的地方,然后查询线段树即可 //#pragma GCC optimize(2) //#pr ...

  8. Educational Codeforces Round 33 (Rated for Div. 2) F. Subtree Minimum Query(主席树合并)

    题意 给定一棵 \(n\) 个点的带点权树,以 \(1\) 为根, \(m\) 次询问,每次询问给出两个值 \(p, k\) ,求以下值: \(p\) 的子树中距离 \(p \le k\) 的所有点权 ...

  9. Educational Codeforces Round 47 (Rated for Div. 2)F. Dominant Indices 线段树合并

    题意:有一棵树,对于每个点求子树中离他深度最多的深度是多少, 题解:线段树合并快如闪电,每个节点开一个权值线段树,递归时合并即可,然后维护区间最多的是哪个权值,到x的深度就是到根的深度减去x到根的深度 ...

  10. Educational Codeforces Round 56 (Rated for Div. 2) F - Vasya and Array dp好题

    F - Vasya and Array dp[ i ][ j ] 表示用了前 i 个数字并且最后一个数字是 j 的方案数. dp[ i ][ j ] = sumdp [i - 1 ][ j ], 这样 ...

随机推荐

  1. java中的字符串数组

    本文主要讲述java中的字符串数组 字符串数组的声明有如下几种形式: // 第一种方式:new // 注意在String的后面[]中不需要添加字符串数组的长度.否则报错. String[] arr_1 ...

  2. JavaScript:箭头函数:省略写法

    之所以把箭头函数拎出来,是因为它不仅仅是声明函数的一种方式,它还是函数式编程的重要根基,它使得函数的使用更加的灵活,同时,它的语法,也相对于function声明的函数更加灵活和复杂. 箭头函数的省略写 ...

  3. Javaweb后端学习笔记

    C/S结构与B/S结构: 1.C/S(Client/Server)结构:适用于个人娱乐市场[QQ等] (1).优点:安全性高.且有效降低服务器压力: (2).不足:增加服务成本.更新较繁琐: 2.B/ ...

  4. 2022年7月9日 第四组 周鹏 HTML的初认识

    <!DOCTYPE html> <html lang="en"> <!--      文档的根标签 --> <head>     & ...

  5. Java开发学习(四十九)----MyBatisPlus更新语句之乐观锁

    1.概念 在讲解乐观锁之前,我们还是先来分析下问题: 业务并发现象带来的问题:秒杀 假如有100个商品或者票在出售,为了能保证每个商品或者票只能被一个人购买,如何保证不会出现超买或者重复卖 对于这一类 ...

  6. Shiro-721反序列化漏洞

    漏洞名称 Shiro-721(Apache Shiro Padding Oracle Attack)反序列化 利用条件 Apache Shiro < 1.4.2 漏洞原理 Apache Shir ...

  7. 让 Win8.1 微软拼音新体验模式支持 Metro 应用

    内容回顾: [1]十个步骤找回 Win8 中的微软拼音新体验模式 [2]发布个工具,一键恢复Win8/8.1中的微软拼音长句模式(新体验模式) 在 [1] 中,我们找回了 Win8 里的微软拼音新体验 ...

  8. [LeetCode]226.翻转二叉树——递归遍历交换孩子

    题目   翻转一棵二叉树. 4 / \ 2 7 / \ / \ 1 3 6 9 //转换为: 4 / \ 7 2 / \ / \ 9 6 3 1 代码 TreeNode* invertTree(Tre ...

  9. 刷题笔记——2758.打印ASCII码 & 2759.打印字符

    题目 2758.打印ASCII码 2759.打印字符 代码 while True: try: a = input() print(ord(a)) except: break while True: t ...

  10. py教学之集合

    集合的概念 集合(set)是一个无序的不重复元素序列. 可以使用大括号 { } 或者 set() 函数创建集合,注意:创建一个空集合必须用 set() 而不是 { },因为 { } 是用来创建一个空字 ...